Suppr超能文献

基于高斯过程模拟器的一维血管模型的贝叶斯敏感性分析。

Bayesian sensitivity analysis of a 1D vascular model with Gaussian process emulators.

作者信息

Melis Alessandro, Clayton Richard H, Marzo Alberto

机构信息

INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Sheffield, U.K.

Department of Mechanical Engineering, The University of Sheffield, Sheffield, U.K.

出版信息

Int J Numer Method Biomed Eng. 2017 Dec;33(12). doi: 10.1002/cnm.2882. Epub 2017 May 11.

Abstract

One-dimensional models of the cardiovascular system can capture the physics of pulse waves but involve many parameters. Since these may vary among individuals, patient-specific models are difficult to construct. Sensitivity analysis can be used to rank model parameters by their effect on outputs and to quantify how uncertainty in parameters influences output uncertainty. This type of analysis is often conducted with a Monte Carlo method, where large numbers of model runs are used to assess input-output relations. The aim of this study was to demonstrate the computational efficiency of variance-based sensitivity analysis of 1D vascular models using Gaussian process emulators, compared to a standard Monte Carlo approach. The methodology was tested on four vascular networks of increasing complexity to analyse its scalability. The computational time needed to perform the sensitivity analysis with an emulator was reduced by the 99.96% compared to a Monte Carlo approach. Despite the reduced computational time, sensitivity indices obtained using the two approaches were comparable. The scalability study showed that the number of mechanistic simulations needed to train a Gaussian process for sensitivity analysis was of the order O(d), rather than O(d×103) needed for Monte Carlo analysis (where d is the number of parameters in the model). The efficiency of this approach, combined with capacity to estimate the impact of uncertain parameters on model outputs, will enable development of patient-specific models of the vascular system, and has the potential to produce results with clinical relevance.

摘要

心血管系统的一维模型能够捕捉脉搏波的物理特性,但涉及许多参数。由于这些参数可能因人而异,因此难以构建针对特定患者的模型。敏感性分析可用于根据模型参数对输出的影响对其进行排序,并量化参数的不确定性如何影响输出的不确定性。这种分析通常采用蒙特卡罗方法进行,即通过大量的模型运行来评估输入-输出关系。本研究的目的是证明,与标准蒙特卡罗方法相比,使用高斯过程模拟器对一维血管模型进行基于方差的敏感性分析的计算效率。该方法在四个复杂度不断增加的血管网络上进行了测试,以分析其可扩展性。与蒙特卡罗方法相比,使用模拟器进行敏感性分析所需的计算时间减少了99.96%。尽管计算时间减少了,但使用这两种方法获得的敏感性指数具有可比性。可扩展性研究表明,训练用于敏感性分析的高斯过程所需的机理模拟次数为O(d)量级,而不是蒙特卡罗分析所需的O(d×103)量级(其中d是模型中的参数数量)。这种方法的效率,再加上估计不确定参数对模型输出影响的能力,将有助于开发血管系统的特定患者模型,并有可能产生具有临床相关性的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验