Yu Jingyin, Wang Linhai, Guo Hui, Liao Boshou, King Graham, Zhang Xiurong
The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
Plant Genome Mapping Laboratory, the University of Georgia, Athens, GA, 30605, USA.
BMC Genomics. 2017 Mar 24;18(1):257. doi: 10.1186/s12864-017-3599-4.
Whole genome duplication (WGD) and tandem duplication (TD) provide two critical sources of raw genetic material for genome complexity and evolutionary novelty. Little is known about the complexity of the Sesamum indicum genome after it diverged from a common ancestor with the paleodiploid Vitis vinifera and further experienced WGD and TD events.
Here, we analyzed the functional divergence of different classes of inter- and intra-genome gene pairs from ancestral events to uncover multiple-layers of evolutionary dynamics acting during the process of forming the modern S. indicum genome. Comprehensive inter-genome analyses revealed that 60% and 70% of syntenic orthologous gene pairs were retained among the two subgenomes in S. indicum compared to V. vinifera, although there was no evidence of significant differences under selection pressure. For the intra-genomic analyses, 5,932 duplicated gene pairs experienced fractionation, with the remaining 1,236 duplicated gene pairs having undergone functional divergence under diversifying selection. Analysis of the TD events indicated that 2,945 paralogous gene pairs, from 1,089 tandem arrays of 2-16 genes, experienced functional divergence under diversifying selection. Sequence diversification of different classes of gene pairs revealed that most of TD events occurred after the WGD event, with others following the ancestral gene order indicating ancient TD events at some time prior to the WGD event. Our comparison-of-function analyses for different classes of gene pairs indicated that the WGD and TD evolutionary events were both responsible for introducing genes that enabled exploration of novel and complementary functionalities, whilst maintaining individual plant ruggedness.
In this study, we first investigated functional divergence of different classes of gene pairs to characterize the dynamic processes associated with each evolutionary event in S. indicum. The data demonstrated massive and distinct functional divergence among different classes of gene pairs, and provided a genome-scale view of gene function diversification explaining the complexity of the S. indicum genome. We hope this provides a biological model to study the mechanism of plant species formation, particularly in the context of the evolutionary history of flowering plants, and offers novel insights for the study of angiosperm genomes.
全基因组复制(WGD)和串联重复(TD)为基因组复杂性和进化新奇性提供了两个关键的原始遗传物质来源。芝麻(Sesamum indicum)基因组与古二倍体葡萄(Vitis vinifera)从共同祖先分化后,又经历了WGD和TD事件,但其基因组的复杂性鲜为人知。
在此,我们分析了不同类型的基因组间和基因组内基因对从祖先事件开始的功能分化,以揭示在现代芝麻基因组形成过程中起作用的多层次进化动态。全面的基因组间分析表明,与葡萄相比,芝麻的两个亚基因组中60%和70%的同线直系基因对得以保留,尽管在选择压力下没有显著差异的证据。对于基因组内分析,5932个重复基因对发生了基因丢失,其余1236个重复基因对在多样化选择下经历了功能分化。对TD事件的分析表明,来自1089个由2 - 16个基因组成的串联阵列的2945个旁系同源基因对在多样化选择下经历了功能分化。不同类型基因对的序列多样化表明,大多数TD事件发生在WGD事件之后,其他事件遵循祖先基因顺序,表明在WGD事件之前的某个时间发生了古老的TD事件。我们对不同类型基因对的功能比较分析表明,WGD和TD进化事件都负责引入能够探索新的和互补功能的基因,同时保持个体植物的适应性。
在本研究中,我们首次研究了不同类型基因对的功能分化,以表征与芝麻中每个进化事件相关的动态过程。数据表明不同类型基因对之间存在大量且明显的功能分化,并提供了一个基因组规模的基因功能多样化视图,解释了芝麻基因组的复杂性。我们希望这能提供一个生物学模型来研究植物物种形成的机制,特别是在开花植物进化历史的背景下,并为被子植物基因组的研究提供新的见解。