Suppr超能文献

用于先进储能应用的多功能碳纳米结构

Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications.

作者信息

Wang Yiran, Wei Huige, Lu Yang, Wei Suying, Wujcik Evan K, Guo Zhanhu

机构信息

Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37976, USA.

Materials Engineering and Nanosensor Laboratory (MEAN), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA.

出版信息

Nanomaterials (Basel). 2015 May 8;5(2):755-777. doi: 10.3390/nano5020755.

Abstract

Carbon nanostructures-including graphene, fullerenes, -have found applications in a number of areas synergistically with a number of other materials. These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications-specifically, electrochemical capacitors, lithium ion batteries, and fuel cells-are emphasized with comprehensive examples.

摘要

碳纳米结构,包括石墨烯、富勒烯,已与许多其他材料协同在多个领域得到应用。这些多功能碳纳米结构因其大的纵横比、比表面积和导电性,最近在储能应用中引起了极大的关注。这篇简要综述旨在报道涉及这些多功能碳纳米结构的储能应用的最新进展。文中通过全面的实例强调了用于储能应用的多功能碳纳米结构的先进设计和测试,特别是在电化学电容器、锂离子电池和燃料电池方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a61/5312914/2bbe74821b7b/nanomaterials-05-00755-g001.jpg

相似文献

1
Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications.
Nanomaterials (Basel). 2015 May 8;5(2):755-777. doi: 10.3390/nano5020755.
2
Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage.
Chem Asian J. 2018 Jun 18;13(12):1518-1529. doi: 10.1002/asia.201800553. Epub 2018 May 23.
3
Nanocarbon networks for advanced rechargeable lithium batteries.
Acc Chem Res. 2012 Oct 16;45(10):1759-69. doi: 10.1021/ar300094m. Epub 2012 Sep 6.
4
Advances of Carbon Materials for Dual-Carbon Lithium-Ion Capacitors: A Review.
Nanomaterials (Basel). 2022 Nov 10;12(22):3954. doi: 10.3390/nano12223954.
5
Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.
Nanotechnology. 2016 Apr 29;27(17):172001. doi: 10.1088/0957-4484/27/17/172001. Epub 2016 Mar 18.
6
Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.
Chemistry. 2014 Oct 20;20(43):13838-52. doi: 10.1002/chem.201403649. Epub 2014 Sep 24.
7
Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.
ChemSusChem. 2015 Jul 20;8(14):2284-311. doi: 10.1002/cssc.201403490. Epub 2015 Jul 3.
8
Recent advances in graphene-based hybrid nanostructures for electrochemical energy storage.
Nanoscale Horiz. 2016 Sep 15;1(5):340-374. doi: 10.1039/c5nh00134j. Epub 2016 Apr 1.
9
2020 Roadmap on Carbon Materials for Energy Storage and Conversion.
Chem Asian J. 2020 Apr 1;15(7):995-1013. doi: 10.1002/asia.201901802. Epub 2020 Mar 4.
10
Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries.
Phys Chem Chem Phys. 2011 Sep 14;13(34):15384-402. doi: 10.1039/c1cp21915d. Epub 2011 Jul 29.

引用本文的文献

1
3
Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review.
Polymers (Basel). 2021 Dec 10;13(24):4327. doi: 10.3390/polym13244327.
4
Carbon-Based Polymer Nanocomposite for High-Performance Energy Storage Applications.
Polymers (Basel). 2020 Feb 26;12(3):505. doi: 10.3390/polym12030505.
5
Micro-Nano Carbon Structures with Platelet, Glassy and Tube-Like Morphologies.
Nanomaterials (Basel). 2019 Aug 31;9(9):1242. doi: 10.3390/nano9091242.
6
Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study.
Front Pharmacol. 2019 Mar 11;9:1401. doi: 10.3389/fphar.2018.01401. eCollection 2018.
8
Micromachined Planar Supercapacitor with Interdigital Buckypaper Electrodes.
Micromachines (Basel). 2018 May 16;9(5):242. doi: 10.3390/mi9050242.
9
Synthesis of Amorphous Carbon Film in Ethanol Inverse Diffusion Flames.
Nanomaterials (Basel). 2018 Aug 24;8(9):656. doi: 10.3390/nano8090656.

本文引用的文献

1
Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells.
Nano Lett. 2014 Oct 8;14(10):5561-8. doi: 10.1021/nl501982b. Epub 2014 Sep 22.
2
Graphene synthesis: Graphene closer to fruition.
Nat Mater. 2014 Apr;13(4):328-9. doi: 10.1038/nmat3925.
3
Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors.
ACS Nano. 2014 Feb 25;8(2):1500-10. doi: 10.1021/nn405595r. Epub 2014 Feb 3.
4
Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors.
Adv Mater. 2014 Apr 2;26(13):2022-7. doi: 10.1002/adma.201304742. Epub 2013 Dec 17.
5
Graphene synthesis via magnetic inductive heating of copper substrates.
ACS Nano. 2013 Sep 24;7(9):7495-9. doi: 10.1021/nn4031564. Epub 2013 Aug 16.
6
Liquid-mediated dense integration of graphene materials for compact capacitive energy storage.
Science. 2013 Aug 2;341(6145):534-7. doi: 10.1126/science.1239089.
7
Controlled formation of carbon nanotube junctions via linker-induced assembly in aqueous solution.
J Am Chem Soc. 2013 Jun 12;135(23):8440-3. doi: 10.1021/ja4018072. Epub 2013 May 29.
9
Unexpectedly high yield carbon nanotube synthesis from low-activity carbon feedstocks at high concentrations.
ACS Nano. 2013 Apr 23;7(4):3150-7. doi: 10.1021/nn305513e. Epub 2013 Mar 8.
10
Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 May-Jun;5(3):233-49. doi: 10.1002/wnan.1213. Epub 2013 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验