Suppr超能文献

使用部分校准阵列的准平稳信号欠定波达方向估计

Underdetermined DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Array.

作者信息

Wang Ben, Wang Wei, Gu Yujie, Lei Shujie

机构信息

College of Automation, Harbin Engineering University, No. 145 Nantong Street, Harbin 150001, China.

Depaprtment of Electrical and Computer Engineering, Temple University, Philadelphia, PA 19122, USA.

出版信息

Sensors (Basel). 2017 Mar 28;17(4):702. doi: 10.3390/s17040702.

Abstract

Quasi-stationary signals have been widely found in practical applications, which have time-varying second-order statistics while staying static within local time frames. In this paper, we develop a robust direction-of-arrival (DOA) estimation algorithm for quasi-stationary signals based on the Khatri-Rao (KR) subspace approach. A partly-calibrated array is considered, in which some of the sensors have an inaccurate knowledge of the gain and phase. In detail, we first develop a closed-form solution to estimate the unknown sensor gains and phases. The array is then calibrated using the estimated sensor gains and phases which enables the improved DOA estimation. To reduce the computational complexity, we also proposed a reduced-dimensional method for DOA estimation. The exploitation of the KR subspace approach enables the proposed method to achieve a larger number of degrees-of-freedom, i.e., more sources than sensors can be estimated. The unique identification condition for the proposed method is also derived. Simulation results demonstrate the effectiveness of the proposed underdetermined DOA estimation algorithm for quasi-stationary signals.

摘要

准平稳信号在实际应用中广泛存在,它们具有时变的二阶统计特性,同时在局部时间帧内保持静态。在本文中,我们基于Khatri-Rao(KR)子空间方法,为准平稳信号开发了一种稳健的波达方向(DOA)估计算法。我们考虑了一种部分校准的阵列,其中一些传感器对增益和相位的了解不准确。具体而言,我们首先开发了一种闭式解来估计未知的传感器增益和相位。然后使用估计的传感器增益和相位对阵列进行校准,从而实现改进的DOA估计。为了降低计算复杂度,我们还提出了一种用于DOA估计的降维方法。对KR子空间方法的利用使得所提出的方法能够实现更大数量的自由度,即可以估计比传感器更多的信号源。我们还推导了所提出方法的唯一识别条件。仿真结果证明了所提出的准平稳信号欠定DOA估计算法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验