Underwood T S A, Sung W, McFadden C H, McMahon S J, Hall D C, McNamara A L, Paganetti H, Sawakuchi G O, Schuemann J
Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America. Department of Medical Engineering and Physics, University College London, London, United Kingdom.
Phys Med Biol. 2017 Apr 21;62(8):3237-3249. doi: 10.1088/1361-6560/aa6429.
Whilst Monte Carlo (MC) simulations of proton energy deposition have been well-validated at the macroscopic level, their microscopic validation remains lacking. Equally, no gold-standard yet exists for experimental metrology of individual proton tracks. In this work we compare the distributions of stochastic proton interactions simulated using the TOPAS-nBio MC platform against confocal microscope data for AlO:C,Mg fluorescent nuclear track detectors (FNTDs). We irradiated [Formula: see text] mm FNTD chips inside a water phantom, positioned at seven positions along a pristine proton Bragg peak with a range in water of 12 cm. MC simulations were implemented in two stages: (1) using TOPAS to model the beam properties within a water phantom and (2) using TOPAS-nBio with Geant4-DNA physics to score particle interactions through a water surrogate of AlO:C,Mg. The measured median track integrated brightness (IB) was observed to be strongly correlated to both (i) voxelized track-averaged linear energy transfer (LET) and (ii) frequency mean microdosimetric lineal energy, [Formula: see text], both simulated in pure water. Histograms of FNTD track IB were compared against TOPAS-nBio histograms of the number of terminal electrons per proton, scored in water with mass-density scaled to mimic AlO:C,Mg. Trends between exposure depths observed in TOPAS-nBio simulations were experimentally replicated in the study of FNTD track IB. Our results represent an important first step towards the experimental validation of MC simulations on the sub-cellular scale and suggest that FNTDs can enable experimental study of the microdosimetric properties of individual proton tracks.
虽然质子能量沉积的蒙特卡罗(MC)模拟在宏观层面已得到充分验证,但其微观验证仍显不足。同样,对于单个质子径迹的实验计量,目前尚无金标准。在这项工作中,我们将使用TOPAS-nBio MC平台模拟的随机质子相互作用分布与用于AlO:C,Mg荧光核径迹探测器(FNTDs)的共聚焦显微镜数据进行比较。我们在水模体中照射了[公式:见原文]毫米的FNTD芯片,该芯片沿初始质子布拉格峰的七个位置放置,在水中的射程为12厘米。MC模拟分两个阶段进行:(1)使用TOPAS对水模体内的束流特性进行建模;(2)使用具有Geant4-DNA物理的TOPAS-nBio,通过AlO:C,Mg的水替代物对粒子相互作用进行评分。观察到测量的中位径迹积分亮度(IB)与(i)体素化径迹平均线能量转移(LET)和(ii)频率平均微剂量线能量[公式:见原文]都密切相关,这两者均在纯水中模拟。将FNTD径迹IB的直方图与TOPAS-nBio中每个质子的末态电子数直方图进行比较,后者是在质量密度按比例缩放以模拟AlO:C,Mg的水中评分得到的。在TOPAS-nBio模拟中观察到的曝光深度之间的趋势在FNTD径迹IB的研究中通过实验得到了重现。我们的结果代表了朝着在亚细胞尺度上对MC模拟进行实验验证迈出的重要第一步,并表明FNTDs能够实现对单个质子径迹微剂量特性的实验研究。