Suppr超能文献

通过蒙特卡洛方法和X射线衍生运动探索核激素受体中的结合机制。

Exploring Binding Mechanisms in Nuclear Hormone Receptors by Monte Carlo and X-ray-derived Motions.

作者信息

Grebner Christoph, Lecina Daniel, Gil Victor, Ulander Johan, Hansson Pia, Dellsen Anita, Tyrchan Christian, Edman Karl, Hogner Anders, Guallar Victor

机构信息

Cardiovascular & Metabolic Disease (CVMD), AstraZeneca, Mölndal, Sweden.

Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain.

出版信息

Biophys J. 2017 Mar 28;112(6):1147-1156. doi: 10.1016/j.bpj.2017.02.004.

Abstract

In this study, we performed an extensive exploration of the ligand entry mechanism for members of the steroid nuclear hormone receptor family (androgen receptor, estrogen receptor α, glucocorticoid receptor, mineralocorticoid receptor, and progesterone receptor) and their endogenous ligands. The exploration revealed a shared entry path through the helix 3, 7, and 11 regions. Examination of the x-ray structures of the receptor-ligand complexes further showed two distinct folds of the helix 6-7 region, classified as "open" and "closed", which could potentially affect ligand binding. To improve sampling of the helix 6-7 loop, we incorporated motion modes based on principal component analysis of existing crystal structures of the receptors and applied them to the protein-ligand sampling. A detailed comparison with the anisotropic network model (an elastic network model) highlights the importance of flexibility in the entrance region. While the binding (interaction) energy of individual simulations can be used to score different ligands, extensive sampling further allows us to predict absolute binding free energies and analyze reaction kinetics using Markov state models and Perron-cluster cluster analysis, respectively. The predicted relative binding free energies for three ligands binding to the progesterone receptor are in very good agreement with experimental results and the Perron-cluster cluster analysis highlighted the importance of a peripheral binding site. Our analysis revealed that the flexibility of the helix 3, 7, and 11 regions represents the most important factor for ligand binding. Furthermore, the hydrophobicity of the ligand influences the transition between the peripheral and the active binding site.

摘要

在本研究中,我们对类固醇核激素受体家族成员(雄激素受体、雌激素受体α、糖皮质激素受体、盐皮质激素受体和孕激素受体)及其内源性配体的配体进入机制进行了广泛探索。该探索揭示了一条通过螺旋3、7和11区域的共享进入路径。对受体 - 配体复合物的X射线结构检查进一步显示,螺旋6 - 7区域存在两种不同的折叠形式,分类为“开放”和“封闭”,这可能会影响配体结合。为了改善螺旋6 - 7环的采样,我们基于受体现有晶体结构的主成分分析纳入了运动模式,并将其应用于蛋白质 - 配体采样。与各向异性网络模型(一种弹性网络模型)的详细比较突出了入口区域灵活性的重要性。虽然单个模拟的结合(相互作用)能量可用于对不同配体进行评分,但广泛采样进一步使我们能够预测绝对结合自由能,并分别使用马尔可夫状态模型和佩龙聚类分析来分析反应动力学。预测的三种配体与孕激素受体结合的相对结合自由能与实验结果非常吻合,并且佩龙聚类分析突出了外周结合位点的重要性。我们的分析表明,螺旋3、7和11区域的灵活性是配体结合的最重要因素。此外,配体的疏水性影响外周和活性结合位点之间的转变。

相似文献

1
Exploring Binding Mechanisms in Nuclear Hormone Receptors by Monte Carlo and X-ray-derived Motions.
Biophys J. 2017 Mar 28;112(6):1147-1156. doi: 10.1016/j.bpj.2017.02.004.
2
Analysis of crystal structures of LXRbeta in relation to plasticity of the ligand-binding domain upon ligand binding.
Chem Biol Drug Des. 2008 Feb;71(2):140-54. doi: 10.1111/j.1747-0285.2007.00620.x. Epub 2008 Jan 22.
3
A canonical cation-π interaction stabilizes the agonist conformation of estrogen-like nuclear receptors.
Eur Biophys J. 2010 Oct;39(11):1471-5. doi: 10.1007/s00249-010-0602-2. Epub 2010 Apr 3.
6
Classification and comparison of ligand-binding sites derived from grid-mapped knowledge-based potentials.
J Mol Graph Model. 2006 Mar;24(5):328-40. doi: 10.1016/j.jmgm.2005.09.013. Epub 2005 Nov 2.
7
PELE-MSM: A Monte Carlo Based Protocol for the Estimation of Absolute Binding Free Energies.
J Chem Theory Comput. 2019 Nov 12;15(11):6243-6253. doi: 10.1021/acs.jctc.9b00753. Epub 2019 Oct 17.
8
Middle-way flexible docking: Pose prediction using mixed-resolution Monte Carlo in estrogen receptor α.
PLoS One. 2019 Apr 23;14(4):e0215694. doi: 10.1371/journal.pone.0215694. eCollection 2019.
9
Looking at nuclear receptors from a new angle.
Mol Cell Endocrinol. 2014 Jan 25;382(1):97-106. doi: 10.1016/j.mce.2013.09.009. Epub 2013 Sep 18.
10
Metal-dependent folding and stability of nuclear hormone receptor DNA-binding domains.
J Mol Biol. 2002 May 24;319(1):87-106. doi: 10.1016/S0022-2836(02)00236-X.

引用本文的文献

1
Discovery of Novel Anti-Resistance AR Antagonists Guided by Funnel Metadynamics Simulation.
Adv Sci (Weinh). 2024 May;11(19):e2309261. doi: 10.1002/advs.202309261. Epub 2024 Mar 13.
2
Recent PELE Developments and Applications in Drug Discovery Campaigns.
Int J Mol Sci. 2022 Dec 17;23(24):16090. doi: 10.3390/ijms232416090.
3
Monte Carlo simulations using PELE to identify a protein-protein inhibitor binding site and pose.
RSC Adv. 2020 Feb 17;10(12):7058-7064. doi: 10.1039/d0ra01127d. eCollection 2020 Feb 13.
4
A structural signature motif enlightens the origin and diversification of nuclear receptors.
PLoS Genet. 2021 Apr 21;17(4):e1009492. doi: 10.1371/journal.pgen.1009492. eCollection 2021 Apr.
5
Structural mechanism underlying ligand binding and activation of PPARγ.
Structure. 2021 Sep 2;29(9):940-950.e4. doi: 10.1016/j.str.2021.02.006. Epub 2021 Mar 12.
6
Δ -Tetrahydrocannabinolic acid alleviates collagen-induced arthritis: Role of PPARγ and CB receptors.
Br J Pharmacol. 2020 Sep;177(17):4034-4054. doi: 10.1111/bph.15155. Epub 2020 Jul 8.
8
Adaptive simulations, towards interactive protein-ligand modeling.
Sci Rep. 2017 Aug 16;7(1):8466. doi: 10.1038/s41598-017-08445-5.

本文引用的文献

1
CSAR 2014: A Benchmark Exercise Using Unpublished Data from Pharma.
J Chem Inf Model. 2016 Jun 27;56(6):1063-77. doi: 10.1021/acs.jcim.5b00523. Epub 2016 May 17.
2
Binding Mode and Induced Fit Predictions for Prospective Computational Drug Design.
J Chem Inf Model. 2016 Apr 25;56(4):774-87. doi: 10.1021/acs.jcim.5b00744. Epub 2016 Mar 25.
3
PELE:  Protein Energy Landscape Exploration. A Novel Monte Carlo Based Technique.
J Chem Theory Comput. 2005 Nov;1(6):1304-11. doi: 10.1021/ct0501811.
4
Ligand Binding Mechanism in Steroid Receptors: From Conserved Plasticity to Differential Evolutionary Constraints.
Structure. 2015 Dec 1;23(12):2280-2290. doi: 10.1016/j.str.2015.09.012. Epub 2015 Oct 22.
5
EMMA: A Software Package for Markov Model Building and Analysis.
J Chem Theory Comput. 2012 Jul 10;8(7):2223-38. doi: 10.1021/ct300274u. Epub 2012 Jun 18.
7
Monte Carlo Free Ligand Diffusion with Markov State Model Analysis and Absolute Binding Free Energy Calculations.
J Chem Theory Comput. 2014 Jan 14;10(1):282-8. doi: 10.1021/ct400678g. Epub 2013 Dec 19.
8
A ligand-entry surface of the nuclear receptor superfamily consists of the helix H3 of the ligand-binding domain.
J Mol Graph Model. 2015 Nov;62:262-275. doi: 10.1016/j.jmgm.2015.10.002. Epub 2015 Nov 10.
9
Porphyrin Binding to Gun4 Protein, Facilitated by a Flexible Loop, Controls Metabolite Flow through the Chlorophyll Biosynthetic Pathway.
J Biol Chem. 2015 Nov 20;290(47):28477-28488. doi: 10.1074/jbc.M115.664987. Epub 2015 Oct 7.
10
Unveiling prolyl oligopeptidase ligand migration by comprehensive computational techniques.
Biophys J. 2015 Jan 6;108(1):116-25. doi: 10.1016/j.bpj.2014.11.3453.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验