Grebner Christoph, Lecina Daniel, Gil Victor, Ulander Johan, Hansson Pia, Dellsen Anita, Tyrchan Christian, Edman Karl, Hogner Anders, Guallar Victor
Cardiovascular & Metabolic Disease (CVMD), AstraZeneca, Mölndal, Sweden.
Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain.
Biophys J. 2017 Mar 28;112(6):1147-1156. doi: 10.1016/j.bpj.2017.02.004.
In this study, we performed an extensive exploration of the ligand entry mechanism for members of the steroid nuclear hormone receptor family (androgen receptor, estrogen receptor α, glucocorticoid receptor, mineralocorticoid receptor, and progesterone receptor) and their endogenous ligands. The exploration revealed a shared entry path through the helix 3, 7, and 11 regions. Examination of the x-ray structures of the receptor-ligand complexes further showed two distinct folds of the helix 6-7 region, classified as "open" and "closed", which could potentially affect ligand binding. To improve sampling of the helix 6-7 loop, we incorporated motion modes based on principal component analysis of existing crystal structures of the receptors and applied them to the protein-ligand sampling. A detailed comparison with the anisotropic network model (an elastic network model) highlights the importance of flexibility in the entrance region. While the binding (interaction) energy of individual simulations can be used to score different ligands, extensive sampling further allows us to predict absolute binding free energies and analyze reaction kinetics using Markov state models and Perron-cluster cluster analysis, respectively. The predicted relative binding free energies for three ligands binding to the progesterone receptor are in very good agreement with experimental results and the Perron-cluster cluster analysis highlighted the importance of a peripheral binding site. Our analysis revealed that the flexibility of the helix 3, 7, and 11 regions represents the most important factor for ligand binding. Furthermore, the hydrophobicity of the ligand influences the transition between the peripheral and the active binding site.
在本研究中,我们对类固醇核激素受体家族成员(雄激素受体、雌激素受体α、糖皮质激素受体、盐皮质激素受体和孕激素受体)及其内源性配体的配体进入机制进行了广泛探索。该探索揭示了一条通过螺旋3、7和11区域的共享进入路径。对受体 - 配体复合物的X射线结构检查进一步显示,螺旋6 - 7区域存在两种不同的折叠形式,分类为“开放”和“封闭”,这可能会影响配体结合。为了改善螺旋6 - 7环的采样,我们基于受体现有晶体结构的主成分分析纳入了运动模式,并将其应用于蛋白质 - 配体采样。与各向异性网络模型(一种弹性网络模型)的详细比较突出了入口区域灵活性的重要性。虽然单个模拟的结合(相互作用)能量可用于对不同配体进行评分,但广泛采样进一步使我们能够预测绝对结合自由能,并分别使用马尔可夫状态模型和佩龙聚类分析来分析反应动力学。预测的三种配体与孕激素受体结合的相对结合自由能与实验结果非常吻合,并且佩龙聚类分析突出了外周结合位点的重要性。我们的分析表明,螺旋3、7和11区域的灵活性是配体结合的最重要因素。此外,配体的疏水性影响外周和活性结合位点之间的转变。