School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332.
Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322.
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3110-E3118. doi: 10.1073/pnas.1619302114. Epub 2017 Mar 29.
Gold nanorods (AuNRs)-assisted plasmonic photothermal therapy (AuNRs-PPTT) is a promising strategy for combating cancer in which AuNRs absorb near-infrared light and convert it into heat, causing cell death mainly by apoptosis and/or necrosis. Developing a valid PPTT that induces cancer cell apoptosis and avoids necrosis in vivo and exploring its molecular mechanism of action is of great importance. Furthermore, assessment of the long-term fate of the AuNRs after treatment is critical for clinical use. We first optimized the size, surface modification [rifampicin (RF) conjugation], and concentration (2.5 nM) of AuNRs and the PPTT laser power (2 W/cm) to achieve maximal induction of apoptosis. Second, we studied the potential mechanism of action of AuNRs-PPTT using quantitative proteomic analysis in mouse tumor tissues. Several death pathways were identified, mainly involving apoptosis and cell death by releasing neutrophil extracellular traps (NETs) (NETosis), which were more obvious upon PPTT using RF-conjugated AuNRs (AuNRs@RF) than with polyethylene glycol thiol-conjugated AuNRs. Cytochrome and p53-related apoptosis mechanisms were identified as contributing to the enhanced effect of PPTT with AuNRs@RF. Furthermore, Pin1 and IL18-related signaling contributed to the observed perturbation of the NETosis pathway by PPTT with AuNRs@RF. Third, we report a 15-month toxicity study that showed no long-term toxicity of AuNRs in vivo. Together, these data demonstrate that our AuNRs-PPTT platform is effective and safe for cancer therapy in mouse models. These findings provide a strong framework for the translation of PPTT to the clinic.
金纳米棒(AuNRs)辅助光热治疗(AuNRs-PPTT)是一种很有前途的治疗癌症的方法,它利用 AuNRs 吸收近红外光并将其转化为热量,主要通过细胞凋亡和/或坏死导致细胞死亡。开发一种有效的 PPTT 来诱导癌细胞凋亡并避免体内坏死,并探索其作用机制,具有重要意义。此外,评估治疗后 AuNRs 的长期命运对于临床应用至关重要。我们首先优化了 AuNRs 的尺寸、表面修饰(利福平(RF)缀合)和浓度(2.5 nM)以及 PPTT 激光功率(2 W/cm),以实现最大的细胞凋亡诱导。其次,我们使用定量蛋白质组学分析研究了 AuNRs-PPTT 的潜在作用机制。在小鼠肿瘤组织中,确定了几种死亡途径,主要涉及细胞凋亡和通过释放中性粒细胞胞外陷阱(NETs)(NETosis)导致的细胞死亡,而在用 RF 修饰的 AuNRs(AuNRs@RF)进行 PPTT 时,这种途径比用聚乙二醇巯基修饰的 AuNRs 更为明显。鉴定出细胞色素和 p53 相关的凋亡机制有助于增强 AuNRs@RF 增强的 PPTT 作用。此外,Pin1 和 IL18 相关信号通路有助于解释 AuNRs@RF 进行 PPTT 对 NETosis 途径的观察到的干扰。第三,我们报告了一项为期 15 个月的毒性研究,结果表明 AuNRs 在体内无长期毒性。综上所述,这些数据表明,我们的 AuNRs-PPTT 平台在小鼠模型中对癌症治疗是有效且安全的。这些发现为将 PPTT 转化为临床应用提供了强有力的框架。