Division of Advanced Materials, Korea Research Institute of Chemical Technology, 141 Gajeong-Ro, Yuseong-Gu, Daejeon 34114, Republic of Korea.
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Science. 2017 Apr 14;356(6334):167-171. doi: 10.1126/science.aam6620. Epub 2017 Mar 30.
Perovskite solar cells (PSCs) exceeding a power conversion efficiency (PCE) of 20% have mainly been demonstrated by using mesoporous titanium dioxide (mp-TiO) as an electron-transporting layer. However, TiO can reduce the stability of PSCs under illumination (including ultraviolet light). Lanthanum (La)-doped BaSnO (LBSO) perovskite would be an ideal replacement given its electron mobility and electronic structure, but LBSO cannot be synthesized as well-dispersible fine particles or crystallized below 500°C. We report a superoxide colloidal solution route for preparing a LBSO electrode under very mild conditions (below 300°C). The PSCs fabricated with LBSO and methylammonium lead iodide (MAPbI) show a steady-state power conversion efficiency of 21.2%, versus 19.7% for a mp-TiO device. The LBSO-based PSCs could retain 93% of their initial performance after 1000 hours of full-Sun illumination.
钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)超过 20%,主要是通过使用介孔二氧化钛(mp-TiO)作为电子传输层来实现的。然而,TiO 在光照下(包括紫外线)会降低 PSCs 的稳定性。考虑到电子迁移率和电子结构,镧(La)掺杂的 BaSnO(LBSO)钙钛矿是一种理想的替代品,但 LBSO 不能很好地分散成细颗粒,也不能在 500°C 以下结晶。我们报告了一种在非常温和的条件下(低于 300°C)制备 LBSO 电极的超氧化物胶体溶液途径。用 LBSO 和甲脒碘化铅(MAPbI)制备的 PSCs 的稳态功率转换效率为 21.2%,而 mp-TiO 器件为 19.7%。基于 LBSO 的 PSCs 在 1000 小时的全阳光照射后仍能保持初始性能的 93%。