Suppr超能文献

miR-183-5p 在骨源细胞外囊泡中随年龄增长而增加,抑制骨髓基质(干)细胞增殖,并诱导干细胞衰老。

MicroRNA-183-5p Increases with Age in Bone-Derived Extracellular Vesicles, Suppresses Bone Marrow Stromal (Stem) Cell Proliferation, and Induces Stem Cell Senescence.

机构信息

Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University , Augusta, Georgia .

出版信息

Tissue Eng Part A. 2017 Nov;23(21-22):1231-1240. doi: 10.1089/ten.TEA.2016.0525. Epub 2017 Apr 28.

Abstract

Microvesicle- and exosome-mediated transport of microRNAs (miRNAs) represents a novel cellular and molecular pathway for cell-cell communication. In this study, we tested the hypothesis that these extracellular vesicles (EVs) and their miRNAs might change with age, contributing to age-related stem cell dysfunction. EVs were isolated from the bone marrow interstitial fluid (supernatant) of young (3-4 months) and aged (24-28 months) mice to determine whether the size, concentration, and miRNA profile of EVs were altered with age in vivo. Results show that EVs isolated from bone marrow are CD63 and CD9 positive, and the concentration and size distribution of bone marrow EVs are similar between the young and aged mice. Bioanalyzer data indicate that EVs from both young and aged mice are highly enriched in miRNAs, and the miRNA profile of bone marrow EVs differs significantly between the young and aged mice. Specifically, the miR-183 cluster (miR-96/-182/-183) is highly expressed in aged EVs. In vitro assays demonstrate that aged EVs are endocytosed by primary bone marrow stromal cells (BMSCs), and these aged EVs inhibit the osteogenic differentiation of young BMSCs. Transfection of BMSCs with miR-183-5p mimic reduces cell proliferation and osteogenic differentiation, increases senescence, and decreases protein levels of the miR-183-5p target heme oxygenase-1 (Hmox1). In vitro assays utilizing HO-induced oxidative stress show that HO treatment of BMSCs increases the abundance of miR-183-5p in BMSC-derived EVs, and Amplex Red assays demonstrate that HO is elevated in the bone marrow microenvironment with age. Together, these data indicate that aging and oxidative stress can significantly alter the miRNA cargo of EVs in the bone marrow microenvironment, which may in turn play a role in stem cell senescence and osteogenic differentiation by reducing Hmox1 activity.

摘要

微小泡和外泌体介导的 microRNAs(miRNAs)转运代表了细胞间通讯的新的细胞和分子途径。在这项研究中,我们检验了这样一个假设,即这些细胞外囊泡(EVs)及其 miRNAs 可能会随着年龄的增长而发生变化,从而导致与年龄相关的干细胞功能障碍。从小鼠骨髓间质液(上清液)中分离 EVs,以确定其大小、浓度和 miRNA 谱是否会随年龄在体内发生变化。结果表明,从小鼠骨髓中分离的 EVs 呈 CD63 和 CD9 阳性,且年轻(3-4 个月)和年老(24-28 个月)小鼠骨髓 EV 的浓度和大小分布相似。生物分析仪数据表明,来自年轻和年老小鼠的 EV 均高度富含 miRNAs,且年轻和年老小鼠的骨髓 EVs 的 miRNA 谱有显著差异。具体而言,miR-183 簇(miR-96/-182/-183)在年老 EV 中高表达。体外实验表明,年老 EV 被原代骨髓基质细胞(BMSCs)内吞,这些年老 EV 抑制年轻 BMSCs 的成骨分化。用 miR-183-5p 模拟物转染 BMSCs 会减少细胞增殖和成骨分化,增加衰老,降低 miR-183-5p 靶基因血红素加氧酶-1(Hmox1)的蛋白水平。利用 HO 诱导的氧化应激的体外实验表明,HO 处理 BMSCs 会增加 BMSC 来源的 EV 中 miR-183-5p 的丰度,而 Amplex Red 实验表明,HO 随年龄增长而在骨髓微环境中升高。综上所述,这些数据表明,衰老和氧化应激会显著改变骨髓微环境中 EV 的 miRNA 载量,这可能通过降低 Hmox1 活性来影响干细胞衰老和成骨分化。

相似文献

5
BMSC-derived extracellular vesicles promoted osteogenesis via Axin2 inhibition by delivering MiR-16-5p.
Int Immunopharmacol. 2023 Jul;120:110319. doi: 10.1016/j.intimp.2023.110319. Epub 2023 May 20.
8
Extracellular vesicles from human umbilical cord blood ameliorate bone loss in senile osteoporotic mice.
Metabolism. 2019 Jun;95:93-101. doi: 10.1016/j.metabol.2019.01.009. Epub 2019 Jan 19.
9
Bone marrow mesenchymal stem cell-derived extracellular vesicles containing miR-497-5p inhibit RSPO2 and accelerate OPLL.
Life Sci. 2021 Aug 15;279:119481. doi: 10.1016/j.lfs.2021.119481. Epub 2021 Apr 12.
10
MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment.
Aging Cell. 2018 Aug;17(4):e12794. doi: 10.1111/acel.12794. Epub 2018 Jun 12.

引用本文的文献

2
Progress in understanding the role and mechanism of miRNAs in osteoporosis.
Front Endocrinol (Lausanne). 2025 Aug 19;16:1544944. doi: 10.3389/fendo.2025.1544944. eCollection 2025.
3
Inhibition of AhR improves cortical bone and skeletal muscle function via preservation of neuromuscular junctions.
JCI Insight. 2025 Jul 15;10(16). doi: 10.1172/jci.insight.192047. eCollection 2025 Aug 22.
4
New Insights into the Role of Cellular Senescence and Its Therapeutic Implications in Ocular Diseases.
Bioengineering (Basel). 2025 May 23;12(6):563. doi: 10.3390/bioengineering12060563.
5
Senotherapy for chronic lung disease.
Pharmacol Rev. 2025 May 28;77(4):100069. doi: 10.1016/j.pharmr.2025.100069.
8
Cuproptosis and its potential role in musculoskeletal disease.
Front Cell Dev Biol. 2025 Apr 11;13:1570131. doi: 10.3389/fcell.2025.1570131. eCollection 2025.
9
Regulatory Roles of Exosomes in Aging and Aging-Related Diseases.
Biogerontology. 2025 Feb 18;26(2):61. doi: 10.1007/s10522-025-10200-7.
10
A bibliometric analysis of exosomes in aging from 2007 to 2023.
Front Med (Lausanne). 2025 Jan 22;11:1488536. doi: 10.3389/fmed.2024.1488536. eCollection 2024.

本文引用的文献

1
A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents.
PLoS One. 2017 Jan 23;12(1):e0170628. doi: 10.1371/journal.pone.0170628. eCollection 2017.
2
Microenvironmental Views on Mesenchymal Stem Cell Differentiation in Aging.
J Dent Res. 2016 Nov;95(12):1333-1340. doi: 10.1177/0022034516653589. Epub 2016 Jul 21.
4
Extracellular vesicle cross-talk in the bone marrow microenvironment: implications in multiple myeloma.
Oncotarget. 2016 Jun 21;7(25):38927-38945. doi: 10.18632/oncotarget.7792.
6
Influence of age on rat bone-marrow mesenchymal stem cells potential.
Sci Rep. 2015 Nov 19;5:16765. doi: 10.1038/srep16765.
7
Identification and analysis of exosomes secreted from macrophages extracted by different methods.
Int J Clin Exp Pathol. 2015 Jun 1;8(6):6135-42. eCollection 2015.
8
The microRNA-183 cluster: the family that plays together stays together.
Nucleic Acids Res. 2015 Sep 3;43(15):7173-88. doi: 10.1093/nar/gkv703. Epub 2015 Jul 13.
9
MicroRNA-183 increases osteoclastogenesis by repressing heme oxygenase-1.
Bone. 2015 Dec;81:237-246. doi: 10.1016/j.bone.2015.07.006. Epub 2015 Jul 8.
10
Osteoblast-derived microvesicles: A novel mechanism for communication between osteoblasts and osteoclasts.
Bone. 2015 Oct;79:37-42. doi: 10.1016/j.bone.2015.05.022. Epub 2015 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验