Suppr超能文献

一种基于变异策略的改进型混沌果蝇优化算法,用于支持向量机的特征选择与参数同步优化及其应用

An improved chaotic fruit fly optimization based on a mutation strategy for simultaneous feature selection and parameter optimization for SVM and its applications.

作者信息

Ye Fei, Lou Xin Yuan, Sun Lin Fu

机构信息

School of Information Science and Technology, Southwest Jiaotong University, ChengDu, China.

出版信息

PLoS One. 2017 Apr 3;12(4):e0173516. doi: 10.1371/journal.pone.0173516. eCollection 2017.

Abstract

This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find the food source. However, the proposed mutation strategy uses two distinct generative mechanisms for new food sources at the osphresis phase, allowing the algorithm procedure to search for the optimal solution in both the whole solution space and within the local solution space containing the fruit fly swarm location. In an evaluation based on a group of ten benchmark problems, the proposed algorithm's performance is compared with that of other well-known algorithms, and the results support the superiority of the proposed algorithm. Moreover, this algorithm is successfully applied in a SVM to perform both parameter setting turning for the SVM and feature selection to solve real-world classification problems. This method is called chaotic fruit fly optimization algorithm (CIFOA)-SVM and has been shown to be a more robust and effective optimization method than other well-known methods, particularly in terms of solving the medical diagnosis problem and the credit card problem.

摘要

本文提出了一种基于改进的带有变异策略的混沌果蝇优化算法(FOA)的新支持向量机(SVM)优化方案,以同时对SVM进行参数设置调整和特征选择。在改进的FOA中,混沌粒子初始化果蝇群体位置,并替代果蝇寻找食物源的距离表达式。然而,所提出的变异策略在嗅觉阶段对新食物源使用两种不同的生成机制,使算法过程能够在整个解空间以及包含果蝇群体位置的局部解空间内搜索最优解。在基于一组十个基准问题的评估中,将所提出算法的性能与其他知名算法进行了比较,结果支持了所提出算法的优越性。此外,该算法成功应用于SVM,以对SVM进行参数设置调整和特征选择,从而解决实际分类问题。这种方法被称为混沌果蝇优化算法(CIFOA)-SVM,并且已被证明是一种比其他知名方法更稳健、更有效的优化方法,特别是在解决医学诊断问题和信用卡问题方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0467/5378331/26518b574827/pone.0173516.g001.jpg

相似文献

3
The construction of support vector machine classifier using the firefly algorithm.
Comput Intell Neurosci. 2015;2015:212719. doi: 10.1155/2015/212719. Epub 2015 Feb 23.
4
An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data.
Biomed Res Int. 2018 Aug 30;2018:7538204. doi: 10.1155/2018/7538204. eCollection 2018.
5
Liver Cancer Algorithm: A novel bio-inspired optimizer.
Comput Biol Med. 2023 Oct;165:107389. doi: 10.1016/j.compbiomed.2023.107389. Epub 2023 Aug 30.
6
Novel chaotic oppositional fruit fly optimization algorithm for feature selection applied on COVID 19 patients' health prediction.
PLoS One. 2022 Oct 10;17(10):e0275727. doi: 10.1371/journal.pone.0275727. eCollection 2022.
7
Risk Assessment of Deep Coal and Gas Outbursts Based on IQPSO-SVM.
Int J Environ Res Public Health. 2022 Oct 8;19(19):12869. doi: 10.3390/ijerph191912869.
8
Optimal location of logistics distribution centres with swarm intelligent clustering algorithms.
PLoS One. 2022 Aug 25;17(8):e0271928. doi: 10.1371/journal.pone.0271928. eCollection 2022.
9
Multi-strategy assisted chaotic coot-inspired optimization algorithm for medical feature selection: A cervical cancer behavior risk study.
Comput Biol Med. 2022 Dec;151(Pt A):106239. doi: 10.1016/j.compbiomed.2022.106239. Epub 2022 Oct 31.
10
An Intelligent Parkinson's Disease Diagnostic System Based on a Chaotic Bacterial Foraging Optimization Enhanced Fuzzy KNN Approach.
Comput Math Methods Med. 2018 Jun 21;2018:2396952. doi: 10.1155/2018/2396952. eCollection 2018.

引用本文的文献

3
Reliable water quality prediction and parametric analysis using explainable AI models.
Sci Rep. 2024 Mar 29;14(1):7520. doi: 10.1038/s41598-024-56775-y.
4
Multi-threshold image segmentation using an enhanced fruit fly optimization for COVID-19 X-ray images.
Biomed Signal Process Control. 2023 Sep;86:105147. doi: 10.1016/j.bspc.2023.105147. Epub 2023 Jun 14.
5
Predictive Models for the Medical Diagnosis of Dengue: A Case Study in Paraguay.
Comput Math Methods Med. 2019 Jul 29;2019:7307803. doi: 10.1155/2019/7307803. eCollection 2019.

本文引用的文献

3
Nonparallel support vector machines for pattern classification.
IEEE Trans Cybern. 2014 Jul;44(7):1067-79. doi: 10.1109/TCYB.2013.2279167. Epub 2013 Sep 5.
4
Crop classification by forward neural network with adaptive chaotic particle swarm optimization.
Sensors (Basel). 2011;11(5):4721-43. doi: 10.3390/s110504721. Epub 2011 May 2.
5
Suitability of dysphonia measurements for telemonitoring of Parkinson's disease.
IEEE Trans Biomed Eng. 2009 Apr;56(4):1015. doi: 10.1109/TBME.2008.2005954.
6
Adaptive particle swarm optimization.
IEEE Trans Syst Man Cybern B Cybern. 2009 Dec;39(6):1362-81. doi: 10.1109/TSMCB.2009.2015956. Epub 2009 Apr 7.
7
Model complexity control for regression using VC generalization bounds.
IEEE Trans Neural Netw. 1999;10(5):1075-89. doi: 10.1109/72.788648.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验