Suppr超能文献

通过对渐进性高碳酸血症的反应模式评估脑血管反应性。

Assessing cerebrovascular reactivity by the pattern of response to progressive hypercapnia.

作者信息

Fisher Joseph A, Sobczyk Olivia, Crawley Adrian, Poublanc Julien, Dufort Paul, Venkatraghavan Lashmi, Sam Kevin, Mikulis David, Duffin James

机构信息

Department of Physiology, University of Toronto, Toronto, Canada.

Institute of Medical Science, University of Toronto, Toronto, Canada.

出版信息

Hum Brain Mapp. 2017 Jul;38(7):3415-3427. doi: 10.1002/hbm.23598. Epub 2017 Apr 3.

Abstract

Cerebral blood flow responds to a carbon dioxide challenge, and is often assessed as cerebrovascular reactivity, assuming a linear response over a limited stimulus range or a sigmoidal response over a wider range. However, these assumed response patterns may not necessarily apply to regions with pathophysiology. Deviations from sigmoidal responses are hypothesised to result from upstream flow limitations causing competition for blood flow between downstream regions, particularly with vasodilatory stimulation; flow is preferentially distributed to regions with more reactive vessels. Under these conditions, linear or sigmoidal fitting may not fairly describe the relationship between stimulus and flow. To assess the range of response patterns and their prevalence a survey of healthy control subjects and patients with cerebrovascular disease was conducted. We used a ramp carbon dioxide challenge from hypo- to hypercapnia as the stimulus, and magnetic resonance imaging to measure the flow responses. We categorized BOLD response patterns into four types based on the signs of their linear slopes in the hypo- and hypercapnic ranges, color coded and mapped them onto their respective anatomical scans. We suggest that these type maps complement maps of linear cerebrovascular reactivity by providing a better indication of the actual response patterns. Hum Brain Mapp 38:3415-3427, 2017. © 2017 Wiley Periodicals, Inc.

摘要

脑血流量对二氧化碳刺激有反应,通常被评估为脑血管反应性,假设在有限刺激范围内呈线性反应,或在更宽范围内呈S形反应。然而,这些假设的反应模式不一定适用于存在病理生理学的区域。有人提出,与S形反应的偏差是由上游血流限制导致下游区域之间血流竞争引起的,特别是在血管舒张刺激时;血流优先分布到血管反应性更强的区域。在这些情况下,线性或S形拟合可能无法准确描述刺激与血流之间的关系。为了评估反应模式的范围及其普遍性,我们对健康对照受试者和脑血管疾病患者进行了一项调查。我们使用从低碳酸血症到高碳酸血症的斜坡式二氧化碳刺激作为刺激物,并使用磁共振成像来测量血流反应。我们根据低碳酸血症和高碳酸血症范围内线性斜率的符号,将血氧水平依赖(BOLD)反应模式分为四种类型,进行颜色编码,并将它们映射到各自的解剖扫描图像上。我们认为,这些类型图谱通过更好地指示实际反应模式,对线性脑血管反应性图谱起到了补充作用。《人类脑图谱》38:3415 - 3427, 2017。© 2017威利期刊公司。

相似文献

1
Assessing cerebrovascular reactivity by the pattern of response to progressive hypercapnia.
Hum Brain Mapp. 2017 Jul;38(7):3415-3427. doi: 10.1002/hbm.23598. Epub 2017 Apr 3.
2
The role of vascular resistance in BOLD responses to progressive hypercapnia.
Hum Brain Mapp. 2017 Nov;38(11):5590-5602. doi: 10.1002/hbm.23751. Epub 2017 Aug 7.
3
A conceptual model for CO₂-induced redistribution of cerebral blood flow with experimental confirmation using BOLD MRI.
Neuroimage. 2014 May 15;92:56-68. doi: 10.1016/j.neuroimage.2014.01.051. Epub 2014 Feb 5.
4
Investigating the non-linearity of the BOLD cerebrovascular reactivity response to targeted hypo/hypercapnia at 7T.
Neuroimage. 2014 Sep;98:296-305. doi: 10.1016/j.neuroimage.2014.05.006. Epub 2014 May 12.
6
A novel perspective to calibrate temporal delays in cerebrovascular reactivity using hypercapnic and hyperoxic respiratory challenges.
Neuroimage. 2019 Feb 15;187:154-165. doi: 10.1016/j.neuroimage.2017.11.044. Epub 2017 Dec 5.
7
Cerebrovascular Resistance: The Basis of Cerebrovascular Reactivity.
Front Neurosci. 2018 Jun 19;12:409. doi: 10.3389/fnins.2018.00409. eCollection 2018.
9
The dynamics of cerebrovascular reactivity shown with transfer function analysis.
Neuroimage. 2015 Jul 1;114:207-16. doi: 10.1016/j.neuroimage.2015.04.029. Epub 2015 Apr 16.
10
Regional Cerebrovascular Responses to Hypercapnia and Hypoxia.
Adv Exp Med Biol. 2016;903:157-67. doi: 10.1007/978-1-4899-7678-9_11.

引用本文的文献

1
Detection and Mitigation of Neurovascular Uncoupling in Brain Gliomas.
Cancers (Basel). 2023 Sep 8;15(18):4473. doi: 10.3390/cancers15184473.
2
Determining the effects of elevated partial pressure of oxygen on hypercapnia-induced cerebrovascular reactivity.
J Cereb Blood Flow Metab. 2023 Dec;43(12):2085-2095. doi: 10.1177/0271678X231197000. Epub 2023 Aug 26.
3
Examining temporal features of BOLD-based cerebrovascular reactivity in clinical populations.
Front Neurol. 2023 Jun 15;14:1199805. doi: 10.3389/fneur.2023.1199805. eCollection 2023.
4
Using carpet plots to analyze blood transit times in the brain during hypercapnic challenge magnetic resonance imaging.
Front Physiol. 2023 Feb 15;14:1134804. doi: 10.3389/fphys.2023.1134804. eCollection 2023.
5
Assessing Cerebrovascular Resistance in Patients With Sickle Cell Disease.
Front Physiol. 2022 Mar 29;13:847969. doi: 10.3389/fphys.2022.847969. eCollection 2022.
6
Cerebrovascular reactivity changes in acute concussion: a controlled cohort study.
Quant Imaging Med Surg. 2021 Nov;11(11):4530-4542. doi: 10.21037/qims-20-1296.
7
Measuring Cerebrovascular Reactivity: Sixteen Avoidable Pitfalls.
Front Physiol. 2021 Jul 7;12:665049. doi: 10.3389/fphys.2021.665049. eCollection 2021.
8
The Reproducibility of Cerebrovascular Reactivity Across MRI Scanners.
Front Physiol. 2021 May 6;12:668662. doi: 10.3389/fphys.2021.668662. eCollection 2021.
10
Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review.
Front Physiol. 2021 Feb 25;12:643468. doi: 10.3389/fphys.2021.643468. eCollection 2021.

本文引用的文献

1
The CO2 stimulus for cerebrovascular reactivity: Fixing inspired concentrations vs. targeting end-tidal partial pressures.
J Cereb Blood Flow Metab. 2016 Jun;36(6):1004-11. doi: 10.1177/0271678X16639326. Epub 2016 Mar 21.
2
Measuring cerebrovascular reactivity: the dynamic response to a step hypercapnic stimulus.
J Cereb Blood Flow Metab. 2015 Nov;35(11):1746-56. doi: 10.1038/jcbfm.2015.114. Epub 2015 Jul 1.
3
The dynamics of cerebrovascular reactivity shown with transfer function analysis.
Neuroimage. 2015 Jul 1;114:207-16. doi: 10.1016/j.neuroimage.2015.04.029. Epub 2015 Apr 16.
4
Examining the regional and cerebral depth-dependent BOLD cerebrovascular reactivity response at 7T.
Neuroimage. 2015 Jul 1;114:239-48. doi: 10.1016/j.neuroimage.2015.04.014. Epub 2015 Apr 12.
6
Assessing cerebrovascular reactivity abnormality by comparison to a reference atlas.
J Cereb Blood Flow Metab. 2015 Feb;35(2):213-20. doi: 10.1038/jcbfm.2014.184. Epub 2014 Nov 12.
7
Investigating the non-linearity of the BOLD cerebrovascular reactivity response to targeted hypo/hypercapnia at 7T.
Neuroimage. 2014 Sep;98:296-305. doi: 10.1016/j.neuroimage.2014.05.006. Epub 2014 May 12.
8
Cerebrovascular reactivity mapping: an evolving standard for clinical functional imaging.
AJNR Am J Neuroradiol. 2015 Jan;36(1):7-13. doi: 10.3174/ajnr.A3941. Epub 2014 Apr 30.
9
A conceptual model for CO₂-induced redistribution of cerebral blood flow with experimental confirmation using BOLD MRI.
Neuroimage. 2014 May 15;92:56-68. doi: 10.1016/j.neuroimage.2014.01.051. Epub 2014 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验