Suppr超能文献

采用响应面法(RSM)和人工神经网络(ANN)建模优化微波辅助提取甜叶菊(Bertoni)叶中的总提取物、甜菊糖苷和莱鲍迪苷 A。

Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling.

机构信息

School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566 Republic of Korea.

School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566 Republic of Korea; Daepyung, Sangju-si, Gyeongsangbuk-do 37112 Republic of Korea.

出版信息

Food Chem. 2017 Aug 15;229:198-207. doi: 10.1016/j.foodchem.2017.01.121. Epub 2017 Jan 27.

Abstract

Stevia rebaudiana (Bertoni) consists of stevioside and rebaudioside-A (Reb-A). We compared response surface methodology (RSM) and artificial neural network (ANN) modelling for their estimation and predictive capabilities in building effective models with maximum responses. A 5-level 3-factor central composite design was used to optimize microwave-assisted extraction (MAE) to obtain maximum yield of target responses as a function of extraction time (X: 1-5min), ethanol concentration, (X: 0-100%) and microwave power (X: 40-200W). Maximum values of the three output parameters: 7.67% total extract yield, 19.58mg/g stevioside yield, and 15.3mg/g Reb-A yield, were obtained under optimum extraction conditions of 4min X, 75% X, and 160W X. The ANN model demonstrated higher efficiency than did the RSM model. Hence, RSM can demonstrate interaction effects of inherent MAE parameters on target responses, whereas ANN can reliably model the MAE process with better predictive and estimation capabilities.

摘要

甜菊糖Rebaudiana ( Bertoni )由甜菊苷和 Reb-A ( Rebaudioside-A )组成。我们比较了响应面法( RSM )和人工神经网络( ANN )建模,以评估它们在建立最大响应的有效模型方面的估计和预测能力。采用 5 水平 3 因子中心组合设计,对微波辅助提取( MAE )进行优化,以获得目标响应的最大产率,作为提取时间( X : 1-5min )、乙醇浓度( X : 0-100% )和微波功率( X : 40-200W )的函数。在提取条件为 4min X 、 75% X 和 160W X 时,三个输出参数的最大值为:总提取物得率为 7.67% ,甜菊苷得率为 19.58mg/g , Reb-A 得率为 15.3mg/g 。与 RSM 模型相比,ANN 模型具有更高的效率。因此,RSM 可以显示固有 MAE 参数对目标响应的相互作用效应,而 ANN 可以更可靠地对 MAE 过程进行建模,具有更好的预测和估计能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验