Riefer A, Weber N, Mund J, Yakovlev D R, Bayer M, Schindlmayr Arno, Meier C, Schmidt W G
Department Physik, Universität Paderborn, 33095 Paderborn, Germany.
J Phys Condens Matter. 2017 Jun 1;29(21):215702. doi: 10.1088/1361-648X/aa6b2a. Epub 2017 Apr 4.
The electronic band structures of hexagonal ZnO and cubic ZnS, ZnSe, and ZnTe compounds are determined within hybrid-density-functional theory and quasiparticle calculations. It is found that the band-edge energies calculated on the [Formula: see text] (Zn chalcogenides) or GW (ZnO) level of theory agree well with experiment, while fully self-consistent QSGW calculations are required for the correct description of the Zn 3d bands. The quasiparticle band structures are used to calculate the linear response and second-harmonic-generation (SHG) spectra of the Zn-VI compounds. Excitonic effects in the optical absorption are accounted for within the Bethe-Salpeter approach. The calculated spectra are discussed in the context of previous experimental data and present SHG measurements for ZnO.
在杂化密度泛函理论和准粒子计算范围内确定了六方ZnO以及立方ZnS、ZnSe和ZnTe化合物的电子能带结构。结果发现,在理论的[公式:见正文](硫族化锌)或GW(ZnO)水平上计算得到的带边能量与实验结果吻合良好,而对于Zn 3d能带的正确描述则需要完全自洽的QSGW计算。准粒子能带结构用于计算硫族化锌化合物的线性响应和二次谐波产生(SHG)光谱。在贝塞耳-萨尔皮特方法中考虑了光吸收中的激子效应。在先前实验数据的背景下讨论了计算得到的光谱,并给出了ZnO的SHG测量结果。