Suppr超能文献

对数变换在能斯特平衡电位计算中的关键作用。

The critical role of logarithmic transformation in Nernstian equilibrium potential calculations.

作者信息

Sawyer Jemima E R, Hennebry James E, Revill Alexander, Brown Angus M

机构信息

School of Life Sciences, University of Nottingham, Nottingham, United Kingdom; and.

School of Life Sciences, University of Nottingham, Nottingham, United Kingdom; and

出版信息

Adv Physiol Educ. 2017 Jun 1;41(2):231-238. doi: 10.1152/advan.00166.2016.

Abstract

The membrane potential, arising from uneven distribution of ions across cell membranes containing selectively permeable ion channels, is of fundamental importance to cell signaling. The necessity of maintaining the membrane potential may be appreciated by expressing Ohm's law as current = voltage/resistance and recognizing that no current flows when voltage = 0, i.e., transmembrane voltage gradients, created by uneven transmembrane ion concentrations, are an absolute requirement for the generation of currents that precipitate the action and synaptic potentials that consume >80% of the brain's energy budget and underlie the electrical activity that defines brain function. The concept of the equilibrium potential is vital to understanding the origins of the membrane potential. The equilibrium potential defines a potential at which there is no net transmembrane ion flux, where the work created by the concentration gradient is balanced by the transmembrane voltage difference, and derives from a relationship describing the work done by the diffusion of ions down a concentration gradient. The Nernst equation predicts the equilibrium potential and, as such, is fundamental to understanding the interplay between transmembrane ion concentrations and equilibrium potentials. Logarithmic transformation of the ratio of internal and external ion concentrations lies at the heart of the Nernst equation, but most undergraduate neuroscience students have little understanding of the logarithmic function. To compound this, no current undergraduate neuroscience textbooks describe the effect of logarithmic transformation in appreciable detail, leaving the majority of students with little insight into how ion concentrations determine, or how ion perturbations alter, the membrane potential.

摘要

离子通过含有选择性通透离子通道的细胞膜分布不均而产生的膜电位,对于细胞信号传导至关重要。通过将欧姆定律表示为电流 = 电压/电阻,并认识到当电压 = 0 时没有电流流动,即由跨膜离子浓度不均产生的跨膜电压梯度,是产生引发动作电位和突触电位的电流的绝对必要条件,而动作电位和突触电位消耗了大脑能量预算的80%以上,并构成了定义脑功能的电活动的基础,就可以理解维持膜电位的必要性。平衡电位的概念对于理解膜电位的起源至关重要。平衡电位定义了一个没有净跨膜离子通量的电位,此时由浓度梯度产生的功被跨膜电压差平衡,它源于描述离子沿浓度梯度扩散所做功的关系。能斯特方程预测平衡电位,因此对于理解跨膜离子浓度与平衡电位之间的相互作用至关重要。内部和外部离子浓度比值的对数变换是能斯特方程的核心,但大多数本科神经科学学生对对数函数了解甚少。更糟糕的是,目前没有本科神经科学教科书详细描述对数变换的影响,这使得大多数学生对离子浓度如何决定或离子扰动如何改变膜电位几乎没有深入了解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验