Suppr超能文献

急性肾损伤回归模型和机器学习模型中的校准漂移

Calibration drift in regression and machine learning models for acute kidney injury.

作者信息

Davis Sharon E, Lasko Thomas A, Chen Guanhua, Siew Edward D, Matheny Michael E

机构信息

Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.

Department of Biostatistics, Vanderbilt University School of Medicine.

出版信息

J Am Med Inform Assoc. 2017 Nov 1;24(6):1052-1061. doi: 10.1093/jamia/ocx030.

Abstract

OBJECTIVE

Predictive analytics create opportunities to incorporate personalized risk estimates into clinical decision support. Models must be well calibrated to support decision-making, yet calibration deteriorates over time. This study explored the influence of modeling methods on performance drift and connected observed drift with data shifts in the patient population.

MATERIALS AND METHODS

Using 2003 admissions to Department of Veterans Affairs hospitals nationwide, we developed 7 parallel models for hospital-acquired acute kidney injury using common regression and machine learning methods, validating each over 9 subsequent years.

RESULTS

Discrimination was maintained for all models. Calibration declined as all models increasingly overpredicted risk. However, the random forest and neural network models maintained calibration across ranges of probability, capturing more admissions than did the regression models. The magnitude of overprediction increased over time for the regression models while remaining stable and small for the machine learning models. Changes in the rate of acute kidney injury were strongly linked to increasing overprediction, while changes in predictor-outcome associations corresponded with diverging patterns of calibration drift across methods.

CONCLUSIONS

Efficient and effective updating protocols will be essential for maintaining accuracy of, user confidence in, and safety of personalized risk predictions to support decision-making. Model updating protocols should be tailored to account for variations in calibration drift across methods and respond to periods of rapid performance drift rather than be limited to regularly scheduled annual or biannual intervals.

摘要

目的

预测性分析为将个性化风险估计纳入临床决策支持创造了机会。模型必须经过良好校准以支持决策制定,但校准会随着时间推移而恶化。本研究探讨了建模方法对性能漂移的影响,并将观察到的漂移与患者群体中的数据变化联系起来。

材料与方法

利用2003年全国退伍军人事务部医院的入院数据,我们使用常见的回归和机器学习方法开发了7个用于医院获得性急性肾损伤的并行模型,并在随后的9年中对每个模型进行验证。

结果

所有模型的区分度均得以维持。随着所有模型对风险的过度预测越来越多,校准度下降。然而,随机森林和神经网络模型在概率范围内保持了校准,捕获的入院病例数比回归模型更多。回归模型的过度预测幅度随时间增加,而机器学习模型的过度预测幅度保持稳定且较小。急性肾损伤发生率的变化与过度预测的增加密切相关,而预测变量与结果关联的变化与不同方法校准漂移的不同模式相对应。

结论

高效且有效的更新协议对于维持个性化风险预测的准确性、用户信心及安全性以支持决策制定至关重要。模型更新协议应根据不同方法校准漂移的差异进行定制,并应对性能快速漂移的时期,而不仅限于定期的年度或半年间隔。

相似文献

1
Calibration drift in regression and machine learning models for acute kidney injury.
J Am Med Inform Assoc. 2017 Nov 1;24(6):1052-1061. doi: 10.1093/jamia/ocx030.
2
Calibration Drift Among Regression and Machine Learning Models for Hospital Mortality.
AMIA Annu Symp Proc. 2018 Apr 16;2017:625-634. eCollection 2017.
3
Maintaining a National Acute Kidney Injury Risk Prediction Model to Support Local Quality Benchmarking.
Circ Cardiovasc Qual Outcomes. 2022 Aug;15(8):e008635. doi: 10.1161/CIRCOUTCOMES.121.008635. Epub 2022 Aug 12.
4
Machine Learning Prediction Models for In-Hospital Mortality After Transcatheter Aortic Valve Replacement.
JACC Cardiovasc Interv. 2019 Jul 22;12(14):1328-1338. doi: 10.1016/j.jcin.2019.06.013.
5
National Veterans Health Administration inpatient risk stratification models for hospital-acquired acute kidney injury.
J Am Med Inform Assoc. 2015 Sep;22(5):1054-71. doi: 10.1093/jamia/ocv051. Epub 2015 Jun 23.
6
A nonparametric updating method to correct clinical prediction model drift.
J Am Med Inform Assoc. 2019 Dec 1;26(12):1448-1457. doi: 10.1093/jamia/ocz127.
7
Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches.
Burns. 2015 Aug;41(5):925-34. doi: 10.1016/j.burns.2015.03.016. Epub 2015 Apr 27.
8
GUESS: projecting machine learning scores to well-calibrated probability estimates for clinical decision-making.
Bioinformatics. 2019 Jul 15;35(14):2458-2465. doi: 10.1093/bioinformatics/bty984.
9
Can machine learning improve mortality prediction following cardiac surgery?
Eur J Cardiothorac Surg. 2020 Dec 1;58(6):1130-1136. doi: 10.1093/ejcts/ezaa229.
10
Detection of calibration drift in clinical prediction models to inform model updating.
J Biomed Inform. 2020 Dec;112:103611. doi: 10.1016/j.jbi.2020.103611. Epub 2020 Nov 4.

引用本文的文献

1
Performance Drift in a Nationally Deployed Population Health Risk Algorithm in the US Veterans Health Administration.
JAMA Health Forum. 2025 Aug 1;6(8):e252717. doi: 10.1001/jamahealthforum.2025.2717.
2
3
Correcting for case-mix shift when developing clinical prediction models.
BMC Med Res Methodol. 2025 Aug 1;25(1):186. doi: 10.1186/s12874-025-02621-2.
5
Gaps in Artificial Intelligence Research for Rural Health in the United States: A Scoping Review.
medRxiv. 2025 Jun 27:2025.06.26.25330361. doi: 10.1101/2025.06.26.25330361.
6
7
Detecting and Remediating Harmful Data Shifts for the Responsible Deployment of Clinical AI Models.
JAMA Netw Open. 2025 Jun 2;8(6):e2513685. doi: 10.1001/jamanetworkopen.2025.13685.
10
Machine Learning Operations in Health Care: A Scoping Review.
Mayo Clin Proc Digit Health. 2024 Jul 14;2(3):421-437. doi: 10.1016/j.mcpdig.2024.06.009. eCollection 2024 Sep.

本文引用的文献

1
Consensus Statement on Electronic Health Predictive Analytics: A Guiding Framework to Address Challenges.
EGEMS (Wash DC). 2016 Mar 7;4(1):1163. doi: 10.13063/2327-9214.1163. eCollection 2016.
2
Moving From Clinical Trials to Precision Medicine: The Role for Predictive Modeling.
JAMA. 2016 Apr 26;315(16):1713-4. doi: 10.1001/jama.2016.4839.
3
Integrating Predictive Analytics Into High-Value Care: The Dawn of Precision Delivery.
JAMA. 2016 Feb 16;315(7):651-2. doi: 10.1001/jama.2015.19417.
4
A calibration hierarchy for risk models was defined: from utopia to empirical data.
J Clin Epidemiol. 2016 Jun;74:167-76. doi: 10.1016/j.jclinepi.2015.12.005. Epub 2016 Jan 6.
7
National Veterans Health Administration inpatient risk stratification models for hospital-acquired acute kidney injury.
J Am Med Inform Assoc. 2015 Sep;22(5):1054-71. doi: 10.1093/jamia/ocv051. Epub 2015 Jun 23.
8
Cardiac surgery-associated acute kidney injury: risk factors analysis and comparison of prediction models.
Interact Cardiovasc Thorac Surg. 2015 Sep;21(3):366-73. doi: 10.1093/icvts/ivv162. Epub 2015 Jun 18.
9
A spline-based tool to assess and visualize the calibration of multiclass risk predictions.
J Biomed Inform. 2015 Apr;54:283-93. doi: 10.1016/j.jbi.2014.12.016. Epub 2015 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验