Suppr超能文献

αB-晶状体蛋白及其他哺乳动物小热休克蛋白中无结构的N端和C端区域的功能作用。

The functional roles of the unstructured N- and C-terminal regions in αB-crystallin and other mammalian small heat-shock proteins.

作者信息

Carver John A, Grosas Aidan B, Ecroyd Heath, Quinlan Roy A

机构信息

Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia.

School of Biological Sciences and the Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia.

出版信息

Cell Stress Chaperones. 2017 Jul;22(4):627-638. doi: 10.1007/s12192-017-0789-6. Epub 2017 Apr 8.

Abstract

Small heat-shock proteins (sHsps), such as αB-crystallin, are one of the major classes of molecular chaperone proteins. In vivo, under conditions of cellular stress, sHsps are the principal defence proteins that prevent large-scale protein aggregation. Progress in determining the structure of sHsps has been significant recently, particularly in relation to the conserved, central and β-sheet structured α-crystallin domain (ACD). However, an understanding of the structure and functional roles of the N- and C-terminal flanking regions has proved elusive mainly because of their unstructured and dynamic nature. In this paper, we propose functional roles for both flanking regions, based around three properties: (i) they act in a localised crowding manner to regulate interactions with target proteins during chaperone action, (ii) they protect the ACD from deleterious amyloid fibril formation and (iii) the flexibility of these regions, particularly at the extreme C-terminus in mammalian sHsps, provides solubility for sHsps under chaperone and non-chaperone conditions. In the eye lens, these properties are highly relevant as the crystallin proteins, in particular the two sHsps αA- and αB-crystallin, are present at very high concentrations.

摘要

小热休克蛋白(sHsps),如αB-晶状体蛋白,是分子伴侣蛋白的主要类别之一。在体内,在细胞应激条件下,sHsps是防止大规模蛋白质聚集的主要防御蛋白。最近,在确定sHsps结构方面取得了重大进展,特别是与保守的、中央的和β-折叠结构的α-晶状体蛋白结构域(ACD)相关。然而,由于其无结构和动态的性质,对N端和C端侧翼区域的结构和功能作用的理解一直难以捉摸。在本文中,我们基于三个特性提出了两个侧翼区域的功能作用:(i)它们以局部拥挤的方式起作用,以调节伴侣作用期间与靶蛋白的相互作用;(ii)它们保护ACD免受有害的淀粉样纤维形成;(iii)这些区域的灵活性,特别是在哺乳动物sHsps的极端C端,为sHsps在伴侣和非伴侣条件下提供溶解性。在眼晶状体中,这些特性高度相关,因为晶状体蛋白,特别是两种sHspsαA-和αB-晶状体蛋白,以非常高的浓度存在。

相似文献

1
The functional roles of the unstructured N- and C-terminal regions in αB-crystallin and other mammalian small heat-shock proteins.
Cell Stress Chaperones. 2017 Jul;22(4):627-638. doi: 10.1007/s12192-017-0789-6. Epub 2017 Apr 8.
2
The Monomeric α-Crystallin Domain of the Small Heat-shock Proteins αB-crystallin and Hsp27 Binds Amyloid Fibril Ends.
J Mol Biol. 2022 Aug 30;434(16):167711. doi: 10.1016/j.jmb.2022.167711. Epub 2022 Jun 28.
4
N- and C-terminal regions of αB-crystallin and Hsp27 mediate inhibition of amyloid nucleation, fibril binding, and fibril disaggregation.
J Biol Chem. 2020 Jul 17;295(29):9838-9854. doi: 10.1074/jbc.RA120.012748. Epub 2020 May 16.
5
The multifaceted nature of αB-crystallin.
Cell Stress Chaperones. 2020 Jul;25(4):639-654. doi: 10.1007/s12192-020-01098-w. Epub 2020 May 7.
6
Structural and functional aspects of hetero-oligomers formed by the small heat shock proteins αB-crystallin and HSP27.
J Biol Chem. 2013 May 10;288(19):13602-9. doi: 10.1074/jbc.M112.443812. Epub 2013 Mar 26.
8
Small heat-shock proteins interact with a flanking domain to suppress polyglutamine aggregation.
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10424-9. doi: 10.1073/pnas.0914773107. Epub 2010 May 19.
9
Binding determinants of the small heat shock protein, αB-crystallin: recognition of the 'IxI' motif.
EMBO J. 2012 Dec 12;31(24):4587-94. doi: 10.1038/emboj.2012.318. Epub 2012 Nov 27.
10
Chaperone activity of human small heat shock protein-GST fusion proteins.
Cell Stress Chaperones. 2017 Jul;22(4):503-515. doi: 10.1007/s12192-017-0764-2. Epub 2017 Jan 27.

引用本文的文献

2
The inhibitory action of the chaperone BRICHOS against the α-Synuclein secondary nucleation pathway.
Nat Commun. 2024 Nov 20;15(1):10038. doi: 10.1038/s41467-024-54212-2.
3
Aquaporin-0-protein interactions elucidated by crosslinking mass spectrometry.
Biochem Biophys Res Commun. 2024 Oct 1;727:150320. doi: 10.1016/j.bbrc.2024.150320. Epub 2024 Jun 27.
5
Heat shock proteins and metal ions - Reaction or interaction?
Comput Struct Biotechnol J. 2023 May 24;21:3103-3108. doi: 10.1016/j.csbj.2023.05.024. eCollection 2023.
6
HSPB8 frameshift mutant aggregates weaken chaperone-assisted selective autophagy in neuromyopathies.
Autophagy. 2023 Aug;19(8):2217-2239. doi: 10.1080/15548627.2023.2179780. Epub 2023 Feb 28.

本文引用的文献

1
Structural Basis for the Interaction of a Human Small Heat Shock Protein with the 14-3-3 Universal Signaling Regulator.
Structure. 2017 Feb 7;25(2):305-316. doi: 10.1016/j.str.2016.12.005. Epub 2017 Jan 12.
2
Small Heat Shock Protein αB-Crystallin Controls Shape and Adhesion of Glioma and Myoblast Cells in the Absence of Stress.
PLoS One. 2016 Dec 15;11(12):e0168136. doi: 10.1371/journal.pone.0168136. eCollection 2016.
3
Intermediate Filaments: Structure and Assembly.
Cold Spring Harb Perspect Biol. 2016 Nov 1;8(11):a018242. doi: 10.1101/cshperspect.a018242.
4
The preferential heterodimerization of human small heat shock proteins HSPB1 and HSPB6 is dictated by the N-terminal domain.
Arch Biochem Biophys. 2016 Nov 15;610:41-50. doi: 10.1016/j.abb.2016.10.002. Epub 2016 Oct 4.
7
Molecular chaperones: guardians of the proteome in normal and disease states.
F1000Res. 2015 Dec 15;4. doi: 10.12688/f1000research.7214.1. eCollection 2015.
8
Insights into Coupled Folding and Binding Mechanisms from Kinetic Studies.
J Biol Chem. 2016 Mar 25;291(13):6689-95. doi: 10.1074/jbc.R115.692715. Epub 2016 Feb 5.
9
The chaperone αB-crystallin uses different interfaces to capture an amorphous and an amyloid client.
Nat Struct Mol Biol. 2015 Nov;22(11):898-905. doi: 10.1038/nsmb.3108. Epub 2015 Oct 12.
10
Intrinsically disordered proteins: emerging interaction specialists.
Curr Opin Struct Biol. 2015 Dec;35:49-59. doi: 10.1016/j.sbi.2015.08.009. Epub 2015 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验