Niddam Alexandra F, Ebady Rhodaba, Bansal Anil, Koehler Anne, Hinz Boris, Moriarty Tara J
Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada M5S 3E2.
Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada M5S 3E2;
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):E3490-E3498. doi: 10.1073/pnas.1615007114. Epub 2017 Apr 10.
Bacterial dissemination via the cardiovascular system is the most common cause of infection mortality. A key step in dissemination is bacterial interaction with endothelia lining blood vessels, which is physically challenging because of the shear stress generated by blood flow. Association of host cells such as leukocytes and platelets with endothelia under vascular shear stress requires mechanically specialized interaction mechanisms, including force-strengthened catch bonds. However, the biomechanical mechanisms supporting vascular interactions of most bacterial pathogens are undefined. Fibronectin (Fn), a ubiquitous host molecule targeted by many pathogens, promotes vascular interactions of the Lyme disease spirochete Here, we investigated how exploits Fn to interact with endothelia under physiological shear stress, using recently developed live cell imaging and particle-tracking methods for studying bacterial-endothelial interaction biomechanics. We found that does not primarily target insoluble matrix Fn deposited on endothelial surfaces but, instead, recruits and induces polymerization of soluble plasma Fn (pFn), an abundant protein in blood plasma that is normally soluble and nonadhesive. Under physiological shear stress, caps of polymerized pFn at bacterial poles formed part of mechanically loaded adhesion complexes, and pFn strengthened and stabilized interactions by a catch-bond mechanism. These results show that can transform a ubiquitous but normally nonadhesive blood constituent to increase the efficiency, strength, and stability of bacterial interactions with vascular surfaces. Similar mechanisms may promote dissemination of other Fn-binding pathogens.
通过心血管系统进行的细菌传播是感染致死的最常见原因。传播过程中的一个关键步骤是细菌与血管内皮的相互作用,由于血流产生的剪切力,这在物理上具有挑战性。在血管剪切力作用下,白细胞和血小板等宿主细胞与内皮的结合需要机械上特殊的相互作用机制,包括力增强的捕获键。然而,支持大多数细菌病原体血管相互作用的生物力学机制尚不清楚。纤连蛋白(Fn)是许多病原体靶向的一种普遍存在的宿主分子,它促进莱姆病螺旋体的血管相互作用。在这里,我们使用最近开发的活细胞成像和粒子追踪方法来研究细菌 - 内皮相互作用生物力学,研究了螺旋体如何利用Fn在生理剪切力下与内皮相互作用。我们发现,螺旋体主要不靶向沉积在内皮表面的不溶性基质Fn,而是招募并诱导可溶性血浆Fn(pFn)聚合,pFn是血浆中一种丰富的蛋白质,通常是可溶的且无粘附性。在生理剪切力下,细菌极处聚合的pFn帽形成了机械加载的粘附复合物的一部分,并且pFn通过捕获键机制增强并稳定了相互作用。这些结果表明,螺旋体可以将一种普遍存在但通常无粘附性的血液成分转化,以提高细菌与血管表面相互作用的效率、强度和稳定性。类似的机制可能促进其他Fn结合病原体的传播。