Department of Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, Spain.
Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, F-75005, Paris, France.
Microb Biotechnol. 2018 Jan;11(1):39-49. doi: 10.1111/1751-7915.12561. Epub 2017 Apr 11.
Microbial electrochemical technologies (METs) rely on the control of interactions between microorganisms and electronic devices, enabling to transform chemical energy into electricity. We report a new approach to construct ready-to-use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibres. Viability test confirmed that the majority of bacteria (ca. 70 ± 5%) survived the encapsulation process in silica and that cell density did not increase in 96 h. The double entrapment within the silica-carbon composite prevented bacterial release from the electrode but allowed a suitable mass transport (ca. 5 min after electron donor pulse), making the electrochemical characterization of the system possible. The artificial bioelectrodes were evaluated in three-electrode reactors and the maximum current displayed was ca. 220 and 150 μA cm using acetate and lactate as electron donors respectively. Cyclic voltammetry of acetate-fed bioelectrodes revealed a sigmoidal catalytic oxidation wave, typical of more advanced-stage biofilms. The presence of G. sulfurreducens within composites was ascertained by SEM analysis, suggesting that only part of the bacterial population was in direct contact with the carbon fibres. Preliminary analyses of the transcriptomic response of immobilized G. sulfurreducens enlightened that encapsulation mainly induces an osmotic stress to the cells. Therefore, ready-to-use artificial bioelectrodes represent a versatile time- and cost-saving strategy for microbial electrochemical systems.
微生物电化学技术(METs)依赖于微生物和电子设备之间相互作用的控制,使化学能量转化为电能。我们报告了一种通过将脱硫弧菌细胞固定在包含硅胶和碳纤维毡的复合材料中,构建即用型人工生物电极的新方法。生存能力测试证实,大多数细菌(约 70±5%)在硅胶包埋过程中存活下来,并且细胞密度在 96 小时内没有增加。硅胶-碳复合材料的双重包埋阻止了细菌从电极中释放,但允许适当的质量传输(在电子供体脉冲后约 5 分钟),从而可以对系统进行电化学表征。人工生物电极在三电极反应器中进行了评估,当使用乙酸盐和乳酸盐作为电子供体时,最大电流分别约为 220 和 150μA cm。用乙酸盐喂养的生物电极的循环伏安法显示出典型的更高级生物膜的类正弦催化氧化波。SEM 分析证实了复合材料中脱硫弧菌的存在,这表明只有部分细菌种群与碳纤维直接接触。对固定化脱硫弧菌的转录组响应的初步分析表明,包埋主要对细胞产生渗透压。因此,即用型人工生物电极代表了微生物电化学系统一种灵活、省时、省钱的策略。