Suppr超能文献

用于个人和移动气溶胶测量的便携式气溶胶质谱仪的研制

Development of Portable Aerosol Mobility Spectrometer for Personal and Mobile Aerosol Measurement.

作者信息

Kulkarni Pramod, Qi Chaolong, Fukushima Nobuhiko

机构信息

Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH, 45226.

Kanomax Japan Inc., Osaka, Japan.

出版信息

Aerosol Sci Technol. 2016;50(11):1167-1179. Epub 2016 Sep 2.

Abstract

We describe development of a Portable Aerosol Mobility Spectrometer (PAMS) for size distribution measurement of submicrometer aerosol. The spectrometer is designed for use in personal or mobile aerosol characterization studies and measures approximately 22.5 × 22.5 × 15 cm and weighs about 4.5 kg including the battery. PAMS uses electrical mobility technique to measure number-weighted particle size distribution of aerosol in the 10-855 nm range. Aerosol particles are electrically charged using a dual-corona bipolar corona charger, followed by classification in a cylindrical miniature differential mobility analyzer. A condensation particle counter is used to detect and count particles. The mobility classifier was operated at an aerosol flow rate of 0.05 L/min, and at two different user-selectable sheath flows of 0.2 L/min (for wider size range 15-855 nm) and 0.4 L/min (for higher size resolution over the size range of 10.6-436 nm). The instrument was operated in voltage stepping mode to retrieve the size distribution, which took approximately 1-2 minutes, depending on the configuration. Sizing accuracy and resolution were probed and found to be within the 25% limit of NIOSH criterion for direct-reading instruments (NIOSH 2012). Comparison of size distribution measurements from PAMS and other commercial mobility spectrometers showed good agreement. The instrument offers unique measurement capability for on-person or mobile size distribution measurements of ultrafine and nanoparticle aerosol.

摘要

我们描述了一种用于测量亚微米气溶胶粒径分布的便携式气溶胶迁移率光谱仪(PAMS)的研制情况。该光谱仪设计用于个人或移动气溶胶特性研究,尺寸约为22.5×22.5×15厘米,包括电池在内重约4.5千克。PAMS采用电迁移技术测量10 - 855纳米范围内气溶胶的数量加权粒径分布。气溶胶颗粒通过双电晕双极性电晕充电器进行充电,随后在圆柱形微型差分迁移率分析仪中进行分类。使用冷凝粒子计数器来检测和计数颗粒。迁移率分级器在气溶胶流速为0.05升/分钟的条件下运行,并在两种不同的用户可选鞘流条件下运行,分别为0.2升/分钟(用于更宽的粒径范围15 - 855纳米)和0.4升/分钟(用于在10.6 - 436纳米粒径范围内具有更高的粒径分辨率)。仪器以电压步进模式运行以获取粒径分布,这大约需要1 - 2分钟,具体取决于配置。对粒径测量精度和分辨率进行了探测,发现其在国家职业安全与健康研究所(NIOSH)直读仪器标准(NIOSH 2012)的25%限值范围内。PAMS与其他商用迁移率光谱仪的粒径分布测量结果比较显示出良好的一致性。该仪器为超细和纳米颗粒气溶胶的人体或移动粒径分布测量提供了独特的测量能力。

相似文献

2
Miniature Dual-Corona Ionizer for Bipolar Charging of Aerosol.
Aerosol Sci Technol. 2013 Jan;47(1):81-92. doi: 10.1080/02786826.2012.728301.
3
Miniature Differential Mobility Analyzer for Compact Field-Portable Spectrometers.
Aerosol Sci Technol. 2016;50(11):1145-1154. doi: 10.1080/02786826.2016.1221500. Epub 2016 Sep 2.
5
Metrological assessment of a portable analyzer for monitoring the particle size distribution of ultrafine particles.
Ann Occup Hyg. 2014 Aug;58(7):860-76. doi: 10.1093/annhyg/meu025. Epub 2014 May 10.
6
Comparison between two different nanoparticle size spectrometers.
J Air Waste Manag Assoc. 2013 Aug;63(8):918-25. doi: 10.1080/10962247.2013.800169.
7
A technique to measure respirator protection factors against aerosol particles in simulated workplace settings using portable instruments.
J Occup Environ Hyg. 2020 May;17(5):231-242. doi: 10.1080/15459624.2020.1735640. Epub 2020 Apr 3.
8
A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles.
Sensors (Basel). 2017 Apr 22;17(4):929. doi: 10.3390/s17040929.
9
Measurement of 100 nm and 60 nm Particle Standards by Differential Mobility Analysis.
J Res Natl Inst Stand Technol. 2006 Aug 1;111(4):257-312. doi: 10.6028/jres.111.022. Print 2006 Jul-Aug.
10
Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling.
Ann Occup Hyg. 2010 Jul;54(5):514-31. doi: 10.1093/annhyg/meq015. Epub 2010 May 6.

引用本文的文献

1
Development of a Portable Aerosol Collector and Spectrometer (PACS).
Aerosol Sci Technol. 2018 May;52(12):1351-1369. doi: 10.1080/02786826.2018.1524985.
2
Direct-reading instruments for aerosols: A review for occupational health and safety professionals part 1: Instruments and good practices.
J Occup Environ Hyg. 2022 Dec;19(12):696-705. doi: 10.1080/15459624.2022.2132255. Epub 2022 Oct 24.
3
Particle emissions from mobile sources: Discussion of ultrafine particle emissions and definition.
J Aerosol Sci. 2022 Jan;159:1-31. doi: 10.1016/j.jaerosci.2021.105881.
4
Non-human primate models of human respiratory infections.
Mol Immunol. 2021 Jul;135:147-164. doi: 10.1016/j.molimm.2021.04.010. Epub 2021 Apr 23.
6
Miniature Differential Mobility Analyzer for Compact Field-Portable Spectrometers.
Aerosol Sci Technol. 2016;50(11):1145-1154. doi: 10.1080/02786826.2016.1221500. Epub 2016 Sep 2.

本文引用的文献

1
Miniature Differential Mobility Analyzer for Compact Field-Portable Spectrometers.
Aerosol Sci Technol. 2016;50(11):1145-1154. doi: 10.1080/02786826.2016.1221500. Epub 2016 Sep 2.
2
Miniature Dual-Corona Ionizer for Bipolar Charging of Aerosol.
Aerosol Sci Technol. 2013 Jan;47(1):81-92. doi: 10.1080/02786826.2012.728301.
3
Carbon Nanotube and Nanofiber Exposure Assessments: An Analysis of 14 Site Visits.
Ann Occup Hyg. 2015 Jul;59(6):705-23. doi: 10.1093/annhyg/mev020. Epub 2015 Apr 7.
4
Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers.
Ann Occup Hyg. 2012 Jul;56(5):542-56. doi: 10.1093/annhyg/mer110. Epub 2011 Dec 8.
5
A strategy for assessing workplace exposures to nanomaterials.
J Occup Environ Hyg. 2011 Nov;8(11):673-85. doi: 10.1080/15459624.2011.623223.
6
Exposure and emissions monitoring during carbon nanofiber production--Part I: elemental carbon and iron-soot aerosols.
Ann Occup Hyg. 2011 Nov;55(9):1016-36. doi: 10.1093/annhyg/mer073. Epub 2011 Sep 28.
7
Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling.
Ann Occup Hyg. 2010 Jul;54(5):514-31. doi: 10.1093/annhyg/meq015. Epub 2010 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验