Fathalipour Soghra, Pourbeyram Sima, Sharafian Aziaeh, Tanomand Asghar, Azam Parisa
Department of Chemistry, Payame Noor University, PO Box: 19395-3697, Tehran, Iran.
Department of Chemistry, Payame Noor University, PO Box: 19395-3697, Tehran, Iran.
Mater Sci Eng C Mater Biol Appl. 2017 Jun 1;75:742-751. doi: 10.1016/j.msec.2017.02.122. Epub 2017 Feb 27.
In this work, an environmentally friendly method was applied for the synthesis of aqueous suspension of l-cysteine modified Ag nanoparticles (NPs)-decorated reduced graphene oxide (rGO) nanocomposite. l-cysteine played a triple role as reducing agent, stabilizer and linker of Ag NPs onto the surface of rGO. The resultant nanocomposite was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction studies (XRD), zeta potential, Raman spectroscopy, scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDX). Meanwhile, minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC), agar well diffusion and cyclic voltammetry (CV) techniques were used for the investigation of antibacterial and electrocatalytic behaviors of the nanocomposite, respectively. The obtained nanocomposite showed not only enhanced electrocatalytic activity for glucose but also excellent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus).
在本工作中,采用了一种环境友好型方法来合成l-半胱氨酸修饰的银纳米颗粒(NPs)装饰的还原氧化石墨烯(rGO)纳米复合材料的水悬浮液。l-半胱氨酸作为还原剂、稳定剂以及银纳米颗粒在rGO表面的连接剂发挥了三重作用。所得纳米复合材料通过傅里叶变换红外光谱(FT-IR)、X射线衍射研究(XRD)、zeta电位、拉曼光谱、扫描电子显微镜(SEM)和X射线能量色散分析(EDX)进行表征。同时,分别使用最低抑菌浓度(MIC)、最低杀菌浓度(MBC)、琼脂孔扩散法和循环伏安法(CV)技术来研究该纳米复合材料的抗菌和电催化行为。所获得的纳米复合材料不仅对葡萄糖表现出增强的电催化活性,而且对大肠杆菌(E. coli)和金黄色葡萄球菌(S. aureus)具有优异的抗菌活性。