Suppr超能文献

一种新型的大白菜种子自动分拣系统。

A Novel Auto-Sorting System for Chinese Cabbage Seeds.

机构信息

Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Tai-Chung 402, Taiwan.

出版信息

Sensors (Basel). 2017 Apr 18;17(4):886. doi: 10.3390/s17040886.

Abstract

This paper presents a novel machine vision-based auto-sorting system for Chinese cabbage seeds. The system comprises an inlet-outlet mechanism, machine vision hardware and software, and control system for sorting seed quality. The proposed method can estimate the shape, color, and textural features of seeds that are provided as input neurons of neural networks in order to classify seeds as "good" and "not good" (NG). The results show the accuracies of classification to be 91.53% and 88.95% for good and NG seeds, respectively. The experimental results indicate that Chinese cabbage seeds can be sorted efficiently using the developed system.

摘要

本论文提出了一种基于机器视觉的新型大白菜种子自动分拣系统。该系统包括进出口机构、机器视觉硬件和软件以及分拣种子质量的控制系统。所提出的方法可以估计种子的形状、颜色和纹理特征,这些特征作为神经网络的输入神经元,以便将种子分类为“好”和“不好”(NG)。结果表明,对于好种子和 NG 种子,分类的准确率分别为 91.53%和 88.95%。实验结果表明,所开发的系统可以有效地对大白菜种子进行分拣。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a372/5424763/4e9ac0373b0a/sensors-17-00886-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验