College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, P. R. China.
School of Medical Informatics, Daqing Campus, Harbin Medical University, Harbin, 150081, P. R. China.
Sci Rep. 2017 Apr 20;7:46566. doi: 10.1038/srep46566.
Long non-coding RNAs (lncRNAs) have been demonstrated to play essential roles in diverse cellular processes and biological functions. Exploring the functions associated with lncRNAs may help provide insight into their underlying biological mechanisms. The current methods primarily focus on investigating the functions of individual lncRNAs; however, essential biological functions may be affected by the combinatorial effects of multiple lncRNAs. Here, we have developed a novel computational method, LncRNAs2Pathways, to identify the functional pathways influenced by the combinatorial effects of a set of lncRNAs of interest based on a global network propagation algorithm. A new Kolmogorov-Smirnov-like statistical measure weighted by the network propagation score, which considers the expression correlation among lncRNAs and coding genes, was used to evaluate the biological pathways influenced by the lncRNAs of interest. We have described the LncRNAs2Pathways methodology and illustrated its effectiveness by analyzing three lncRNA sets associated with glioma, prostate and pancreatic cancers. We further analyzed the reproducibility and robustness and compared our results with those of two other methods. Based on these analyses, we showed that LncRNAs2Pathways can effectively identify the functional pathways associated with lncRNA sets. Finally, we implemented this method as a freely available R-based tool.
长非编码 RNA(lncRNA)已被证明在多种细胞过程和生物功能中发挥着重要作用。探索与 lncRNA 相关的功能可能有助于深入了解其潜在的生物学机制。目前的方法主要集中在研究单个 lncRNA 的功能;然而,重要的生物学功能可能会受到多个 lncRNA 的组合效应的影响。在这里,我们开发了一种新的计算方法 LncRNAs2Pathways,该方法基于全局网络传播算法,根据一组感兴趣的 lncRNA 的组合效应,识别受影响的功能途径。我们使用了一种新的基于网络传播得分的柯尔莫哥洛夫-斯米尔诺夫(Kolmogorov-Smirnov)似然统计度量,该度量考虑了 lncRNA 和编码基因之间的表达相关性,用于评估受感兴趣的 lncRNA 影响的生物途径。我们描述了 LncRNAs2Pathways 方法,并通过分析与脑胶质瘤、前列腺癌和胰腺癌相关的三个 lncRNA 集来展示其有效性。我们进一步分析了可重复性和稳健性,并将我们的结果与另外两种方法进行了比较。基于这些分析,我们表明 LncRNAs2Pathways 可以有效地识别与 lncRNA 集相关的功能途径。最后,我们将该方法实现为一个免费的基于 R 的工具。