Alimohammadi Mona, Pichardo-Almarza Cesar, Agu Obiekezie, Díaz-Zuccarini Vanessa
1 Department of Mechanical Engineering, University College London, London, UK.
2 Vascular Unit, University College London Hospitals, London, UK.
Proc Inst Mech Eng H. 2017 May;231(5):378-390. doi: 10.1177/0954411917697356.
Atherogenesis, the formation of plaques in the wall of blood vessels, starts as a result of lipid accumulation (low-density lipoprotein cholesterol) in the vessel wall. Such accumulation is related to the site of endothelial mechanotransduction, the endothelial response to mechanical stimuli and haemodynamics, which determines biochemical processes regulating the vessel wall permeability. This interaction between biomechanical and biochemical phenomena is complex, spanning different biological scales and is patient-specific, requiring tools able to capture such mathematical and biological complexity in a unified framework. Mathematical models offer an elegant and efficient way of doing this, by taking into account multifactorial and multiscale processes and mechanisms, in order to capture the fundamentals of plaque formation in individual patients. In this study, a mathematical model to understand plaque and calcification locations is presented: this model provides a strong interpretability and physical meaning through a multiscale, complex index or metric (the penetration site of low-density lipoprotein cholesterol, expressed as volumetric flux). Computed tomography scans of the aortic bifurcation and iliac arteries are analysed and compared with the results of the multifactorial model. The results indicate that the model shows potential to predict the majority of the plaque locations, also not predicting regions where plaques are absent. The promising results from this case study provide a proof of concept that can be applied to a larger patient population.
动脉粥样硬化,即血管壁中斑块的形成,始于血管壁中脂质(低密度脂蛋白胆固醇)的积累。这种积累与内皮机械转导部位、内皮对机械刺激和血流动力学的反应有关,而这又决定了调节血管壁通透性的生化过程。生物力学和生化现象之间的这种相互作用很复杂,跨越不同的生物尺度,且因患者而异,需要能够在统一框架中捕捉这种数学和生物学复杂性的工具。数学模型通过考虑多因素和多尺度过程及机制,提供了一种优雅而有效的方法来实现这一点,以便捕捉个体患者斑块形成的基本原理。在本研究中,提出了一个用于理解斑块和钙化位置的数学模型:该模型通过一个多尺度、复杂的指数或度量(低密度脂蛋白胆固醇的渗透部位,以体积通量表示)提供了很强的可解释性和物理意义。对主动脉分叉和髂动脉的计算机断层扫描进行分析,并与多因素模型的结果进行比较。结果表明,该模型显示出预测大多数斑块位置的潜力,同时也不会预测不存在斑块的区域。这个案例研究的令人鼓舞的结果提供了一个可应用于更大患者群体的概念验证。