Suppr超能文献

从焦虑到鲁莽:一种控制系统方法统一了威胁检测全谱中的前额叶-边缘系统调节。

From Anxious to Reckless: A Control Systems Approach Unifies Prefrontal-Limbic Regulation Across the Spectrum of Threat Detection.

作者信息

Mujica-Parodi Lilianne R, Cha Jiook, Gao Jonathan

机构信息

Department of Biomedical Engineering, Stony Brook University School of MedicineStony Brook, NY, USA.

Department of Psychiatry, Columbia University College of Physicians and SurgeonsNew York, NY, USA.

出版信息

Front Syst Neurosci. 2017 Apr 7;11:18. doi: 10.3389/fnsys.2017.00018. eCollection 2017.

Abstract

Here we provide an integrative review of basic control circuits, and introduce techniques by which their regulation can be quantitatively measured using human neuroimaging. We illustrate the utility of the control systems approach using four human neuroimaging threat detection studies ( = 226), to which we applied circuit-wide analyses in order to identify the key mechanism underlying individual variation. In so doing, we build upon the canonical prefrontal-limbic control system to integrate circuit-wide influence from the (IFG). These were incorporated into a computational control systems model constrained by neuroanatomy and designed to replicate our experimental data. In this model, the IFG acts as an informational set point, gating signals between the primary prefrontal-limbic negative feedback loop and its cortical information-gathering loop. Along the cortical route, if the sensory cortex provides sufficient information to make a threat assessment, the signal passes to the ventromedial prefrontal cortex (vmPFC), whose threat-detection threshold subsequently modulates amygdala outputs. However, if signal outputs from the sensory cortex do not provide sufficient information during the first pass, the signal loops back to the sensory cortex, with each cycle providing increasingly fine-grained processing of sensory data. Simulations replicate IFG (chaotic) dynamics experimentally observed at both ends at the threat-detection spectrum. As such, they identify distinct types of IFG disconnection from the circuit, with associated clinical outcomes. If IFG thresholds are too high, the IFG and sensory cortex cycle for too long; in the meantime the coarse-grained (excitatory) pathway will dominate, biasing ambiguous stimuli as false positives. On the other hand, if cortical IFG thresholds are too low, the inhibitory pathway will suppress the amygdala without cycling back to the sensory cortex for much-needed fine-grained sensory cortical data, biasing ambiguous stimuli as false negatives. Thus, the control systems model provides a consistent mechanism for IFG regulation, capable of producing results consistent with our data for the full spectrum of threat-detection: from fearful to optimal to reckless. More generally, it illustrates how quantitative characterization of circuit dynamics can be used to unify a fundamental dimension across psychiatric affective symptoms, with implications for populations that range from anxiety disorders to addiction.

摘要

在此,我们对基本控制回路进行了综合综述,并介绍了利用人类神经成像技术对其调节进行定量测量的方法。我们通过四项人类神经成像威胁检测研究( = 226)阐述了控制系统方法的实用性,我们对这些研究应用了全回路分析,以确定个体差异背后的关键机制。在此过程中,我们以经典的前额叶 - 边缘控制系统为基础,整合了来自额下回(IFG)的全回路影响。这些被纳入一个受神经解剖学约束并旨在复制我们实验数据的计算控制系统模型。在这个模型中,额下回充当信息设定点,在前额叶 - 边缘主要负反馈回路与其皮质信息收集回路之间传递信号。沿着皮质路径,如果感觉皮层提供了足够信息以进行威胁评估,信号就会传递到腹内侧前额叶皮层(vmPFC),其威胁检测阈值随后会调节杏仁核输出。然而,如果感觉皮层的信号输出在首次传递时没有提供足够信息,信号就会循环回到感觉皮层,每个循环都会对感觉数据进行越来越精细的处理。模拟结果复制了在威胁检测频谱两端实验观察到的额下回(混沌)动态。因此,它们识别出与电路断开连接的不同类型的额下回,并伴有相关的临床结果。如果额下回阈值过高,额下回和感觉皮层循环时间过长;与此同时,粗粒度(兴奋性)通路将占主导,将模糊刺激偏向为假阳性。另一方面,如果皮质额下回阈值过低,抑制性通路将抑制杏仁核,而不会循环回到感觉皮层以获取急需的精细感觉皮层数据,将模糊刺激偏向为假阴性。因此,控制系统模型为额下回调节提供了一个一致的机制,能够产生与我们在整个威胁检测频谱上的数据一致的结果:从恐惧到最佳再到鲁莽。更一般地说,它说明了如何利用回路动态的定量表征来统一跨越精神科情感症状的一个基本维度,这对从焦虑症到成瘾等各类人群都有影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验