Suppr超能文献

经颅电刺激治疗期间人体头部电流流动的成像

Imaging of current flow in the human head during transcranial electrical therapy.

作者信息

Kasinadhuni A K, Indahlastari A, Chauhan M, Schär Michael, Mareci T H, Sadleir R J

机构信息

J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville FL, USA.

School of Biological and Health Systems Engineering, Arizona State University, Tempe AZ, USA.

出版信息

Brain Stimul. 2017 Jul-Aug;10(4):764-772. doi: 10.1016/j.brs.2017.04.125. Epub 2017 Apr 20.

Abstract

BACKGROUND

It has been assumed that effects caused by tDCS or tACS neuromodulation are due to electric current flow within brain structures. However, to date, direct current density distributions in the brains of human subjects have not been measured. Instead computational models of tDCS or tACS have been used to predict electric current and field distributions for dosimetry and mechanism analysis purposes.

OBJECTIVE/HYPOTHESIS: We present the first in vivo images of electric current density distributions within the brain in four subjects undergoing transcranial electrical stimulation.

METHODS

Magnetic resonance electrical impedance tomography (MREIT) techniques encode current flow in phase images. In four human subjects, we used MREIT to measure magnetic flux density distributions caused by tACS currents, and then calculated current density distributions from these data. Computational models of magnetic flux and current distribution, constructed using contemporaneously collected T-weighted structural MRI images, were co-registered to compare predicted and experimental results.

RESULTS

We found consistency between experimental and simulated magnetic flux and current density distributions using transtemporal (T7-T8) and anterior-posterior (Fpz-Oz) electrode montages, and also differences that may indicate a need to improve models to better interpret experimental results. While human subject data agreed with computational model predictions in overall scale, differences may result from factors such as effective electrode surface area and conductivities assumed in models.

CONCLUSIONS

We believe this method may be useful in improving reproducibility, assessing safety, and ultimately aiding understanding of mechanisms of action in electrical and magnetic neuromodulation modalities.

摘要

背景

一直以来人们认为经颅直流电刺激(tDCS)或经颅交流电刺激(tACS)神经调节所产生的效应是由于脑结构内的电流流动所致。然而,迄今为止,尚未对人类受试者大脑中的直流电流密度分布进行测量。相反,tDCS或tACS的计算模型已被用于预测电流和场分布,以用于剂量测定和机制分析。

目的/假设:我们展示了四名接受经颅电刺激的受试者大脑内电流密度分布的首张活体图像。

方法

磁共振电阻抗断层成像(MREIT)技术在相位图像中对电流流动进行编码。在四名人类受试者中,我们使用MREIT测量由tACS电流引起的磁通密度分布,然后根据这些数据计算电流密度分布。使用同时收集的T加权结构MRI图像构建的磁通和电流分布计算模型进行了配准,以比较预测结果和实验结果。

结果

我们发现使用颞部(T7 - T8)和前后(Fpz - Oz)电极蒙太奇时,实验和模拟的磁通及电流密度分布之间存在一致性,同时也存在差异,这可能表明需要改进模型以更好地解释实验结果。虽然人类受试者数据在总体规模上与计算模型预测结果一致,但差异可能源于诸如模型中假设的有效电极表面积和电导率等因素。

结论

我们认为这种方法可能有助于提高可重复性、评估安全性,并最终有助于理解电和磁神经调节方式的作用机制。

相似文献

1
Imaging of current flow in the human head during transcranial electrical therapy.
Brain Stimul. 2017 Jul-Aug;10(4):764-772. doi: 10.1016/j.brs.2017.04.125. Epub 2017 Apr 20.
2
3
Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.
IEEE Trans Biomed Eng. 2017 Nov;64(11):2505-2514. doi: 10.1109/TBME.2017.2732502.
4
Effects of Electrode Drift in Transcranial Direct Current Stimulation.
Brain Stimul. 2015 May-Jun;8(3):515-9. doi: 10.1016/j.brs.2014.12.007. Epub 2014 Dec 24.
5
Benchmarking transcranial electrical stimulation finite element models: a comparison study.
J Neural Eng. 2019 Apr;16(2):026019. doi: 10.1088/1741-2552/aafbbd. Epub 2019 Jan 3.
7
Methods to Compare Predicted and Observed Phosphene Experience in tACS Subjects.
Neural Plast. 2018 Dec 6;2018:8525706. doi: 10.1155/2018/8525706. eCollection 2018.
8
Changing head model extent affects finite element predictions of transcranial direct current stimulation distributions.
J Neural Eng. 2016 Dec;13(6):066006. doi: 10.1088/1741-2560/13/6/066006. Epub 2016 Oct 5.
9
Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS).
Phys Med Biol. 2016 Jun 21;61(12):4506-21. doi: 10.1088/0031-9155/61/12/4506. Epub 2016 May 25.

引用本文的文献

3
Precise and Rapid Whole-Head Segmentation from Magnetic Resonance Images of Older Adults using Deep Learning.
Imaging Neurosci (Camb). 2024 Mar;2. doi: 10.1162/imag_a_00090. Epub 2024 Feb 13.
4
Inconsistencies in mapping current distribution in transcranial direct current stimulation.
Front Neuroimaging. 2023 Jan 16;1:1069500. doi: 10.3389/fnimg.2022.1069500. eCollection 2022.
5
Estimation of brain tissue response by electrical stimulation in a subject-specific model implemented by conductivity tensor imaging.
Front Neurosci. 2023 May 23;17:1197452. doi: 10.3389/fnins.2023.1197452. eCollection 2023.
6
Neurophysiological mechanisms of transcranial alternating current stimulation.
Front Neurosci. 2023 Apr 5;17:1091925. doi: 10.3389/fnins.2023.1091925. eCollection 2023.
7
Magnetic Resonance Current Density Imaging (MR-CDI).
Adv Exp Med Biol. 2022;1380:135-155. doi: 10.1007/978-3-031-03873-0_6.
8
MR Current Density and MREIT Data Acquisition.
Adv Exp Med Biol. 2022;1380:111-134. doi: 10.1007/978-3-031-03873-0_5.
9
Phantom Construction and Equipment Configurations for Characterizing Electrical Properties Using MRI.
Adv Exp Med Biol. 2022;1380:83-110. doi: 10.1007/978-3-031-03873-0_4.
10
Electromagnetic Properties and the Basis for CDI, MREIT, and EPT.
Adv Exp Med Biol. 2022;1380:1-16. doi: 10.1007/978-3-031-03873-0_1.

本文引用的文献

1
Multishot echo-planar MREIT for fast imaging of conductivity, current density, and electric field distributions.
Magn Reson Med. 2018 Jan;79(1):71-82. doi: 10.1002/mrm.26638. Epub 2017 Feb 16.
2
Anisotropic Conductivity Tensor Imaging of In Vivo Canine Brain Using DT-MREIT.
IEEE Trans Med Imaging. 2017 Jan;36(1):124-131. doi: 10.1109/TMI.2016.2598546.
5
Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016.
Brain Stimul. 2016 Sep-Oct;9(5):641-661. doi: 10.1016/j.brs.2016.06.004. Epub 2016 Jun 15.
6
A Digital Atlas of Middle to Large Brain Vessels and Their Relation to Cortical and Subcortical Structures.
Front Neuroanat. 2016 Feb 17;10:12. doi: 10.3389/fnana.2016.00012. eCollection 2016.
7
A technical guide to tDCS, and related non-invasive brain stimulation tools.
Clin Neurophysiol. 2016 Feb;127(2):1031-1048. doi: 10.1016/j.clinph.2015.11.012. Epub 2015 Nov 22.
8
9
10
Electrical tissue property imaging at low frequency using MREIT.
IEEE Trans Biomed Eng. 2014 May;61(5):1390-9. doi: 10.1109/TBME.2014.2298859.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验