Suppr超能文献

用于 SD-OCT 中分支视网膜动脉阻塞分类和分割的框架。

A Framework for Classification and Segmentation of Branch Retinal Artery Occlusion in SD-OCT.

出版信息

IEEE Trans Image Process. 2017 Jul;26(7):3518-3527. doi: 10.1109/TIP.2017.2697762. Epub 2017 Apr 25.

Abstract

Branch retinal artery occlusion (BRAO) is an ocular emergency, which could lead to blindness. Quantitative analysis of the BRAO region in the retina is necessary for the assessment of the severity of retinal ischemia. In this paper, a fully automatic framework was proposed to segment BRAO regions based on 3D spectral-domain optical coherence tomography (SD-OCT) images. To the best of our knowledge, this is the first automatic 3D BRAO segmentation framework. First, the input 3D image is automatically classified into BRAO of acute phase and BRAO of chronic phase or normal retina using an AdaBoost classifier based on combining local structural, intensity, textural features with our new feature distribution analyzing strategy. Then, BRAO regions of acute phase and chronic phase are segmented separately. A thickness model is built to segment BRAO in the chronic phase. While for segmenting BRAO in the acute phase, a two-step segmentation strategy is performed: rough initialization and refine segmentation. The proposed method was tested on SD-OCT images of 35 patients (12 BRAO acute phase, 11 BRAO chronic phase, and 12 normal eyes) using the leave-one-out strategy. The classification accuracy for BRAO acute phase, BRAO chronic phase, and normal retina were 100%, 90.9%, and 91.7%, respectively. The overall true positive volume fraction (TPVF) and false positive volume fraction (FPVF) for the acute phase were 91.1% and 5.5% and for the chronic phase were 92.7% and 8.4%, respectively.

摘要

视网膜分支动脉阻塞(BRAO)是一种眼部急症,可导致失明。对视网膜 BRAO 区域进行定量分析对于评估视网膜缺血的严重程度是必要的。本文提出了一种基于 3D 谱域光相干断层扫描(SD-OCT)图像的全自动 BRAO 区域分割框架。据我们所知,这是第一个自动的 3D BRAO 分割框架。首先,使用基于局部结构、强度、纹理特征与我们新的特征分布分析策略相结合的 AdaBoost 分类器,自动将输入的 3D 图像分为急性 BRAO 和慢性 BRAO 或正常视网膜。然后,分别分割急性和慢性 BRAO 区域。建立厚度模型来分割慢性 BRAO。对于急性 BRAO 的分割,采用两步分割策略:粗初始化和精细分割。该方法使用留一法策略在 35 名患者的 SD-OCT 图像上进行了测试(12 例急性 BRAO,11 例慢性 BRAO 和 12 例正常眼)。急性 BRAO、慢性 BRAO 和正常视网膜的分类准确率分别为 100%、90.9%和 91.7%。急性 BRAO 的总体真阳性体积分数(TPVF)和假阳性体积分数(FPVF)分别为 91.1%和 5.5%,慢性 BRAO 分别为 92.7%和 8.4%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验