Suppr超能文献

利用定向信息推断神经网络功能连接性。

Inferring neuronal network functional connectivity with directed information.

作者信息

Cai Zhiting, Neveu Curtis L, Baxter Douglas A, Byrne John H, Aazhang Behnaam

机构信息

Department of Electrical and Computer Engineering, Rice University, Houston, Texas; and.

Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.

出版信息

J Neurophysiol. 2017 Aug 1;118(2):1055-1069. doi: 10.1152/jn.00086.2017. Epub 2017 May 3.

Abstract

A major challenge in neuroscience is to develop effective tools that infer the circuit connectivity from large-scale recordings of neuronal activity patterns. In this study, context tree maximizing (CTM) was used to estimate directed information (DI), which measures causal influences among neural spike trains in order to infer putative synaptic connections. In contrast to existing methods, the method presented here is data driven and can readily identify both linear and nonlinear relations between neurons. This CTM-DI method reliably identified circuit structures underlying simulations of realistic conductance-based networks. It also inferred circuit properties from voltage-sensitive dye recordings of the buccal ganglion of This method can be applied to other large-scale recordings as well. It offers a systematic tool to map network connectivity and to track changes in network structure such as synaptic strengths as well as the degrees of connectivity of individual neurons, which in turn could provide insights into how modifications produced by learning are distributed in a neural network. This study brings together the techniques of voltage-sensitive dye recording and information theory to infer the functional connectome of the feeding central pattern generating network of In contrast to current statistical approaches, the inference method developed in this study is data driven and validated by conductance-based model circuits, can distinguish excitatory and inhibitory connections, is robust against synaptic plasticity, and is capable of detecting network structures that mediate motor patterns.

摘要

神经科学中的一个主要挑战是开发有效的工具,以便从神经元活动模式的大规模记录中推断电路连接性。在本研究中,上下文树最大化(CTM)被用于估计定向信息(DI),该定向信息用于测量神经脉冲序列之间的因果影响,以推断假定的突触连接。与现有方法不同,本文提出的方法是数据驱动的,能够轻松识别神经元之间的线性和非线性关系。这种CTM-DI方法可靠地识别了基于现实电导网络模拟的电路结构。它还从海兔颊神经节的电压敏感染料记录中推断出电路特性。该方法也可应用于其他大规模记录。它提供了一种系统工具来绘制网络连接性,并跟踪网络结构的变化,如突触强度以及单个神经元的连接程度,这反过来可以深入了解学习产生的修改如何在神经网络中分布。本研究将电压敏感染料记录技术和信息理论结合起来,以推断海兔摄食中枢模式生成网络的功能连接组。与当前的统计方法不同,本研究中开发的推理方法是数据驱动的,并通过基于电导的模型电路进行了验证,能够区分兴奋性和抑制性连接,对突触可塑性具有鲁棒性,并且能够检测介导运动模式的网络结构。

相似文献

1
Inferring neuronal network functional connectivity with directed information.
J Neurophysiol. 2017 Aug 1;118(2):1055-1069. doi: 10.1152/jn.00086.2017. Epub 2017 May 3.
2
Assessing functional connectivity of neural ensembles using directed information.
J Neural Eng. 2012 Apr;9(2):026004. doi: 10.1088/1741-2560/9/2/026004. Epub 2012 Feb 13.
3
Identification of excitatory-inhibitory links and network topology in large-scale neuronal assemblies from multi-electrode recordings.
PLoS Comput Biol. 2018 Aug 27;14(8):e1006381. doi: 10.1371/journal.pcbi.1006381. eCollection 2018 Aug.
4
A method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordings.
J Neurosci Methods. 2005 Jun 15;144(2):265-79. doi: 10.1016/j.jneumeth.2004.11.013. Epub 2004 Dec 21.
5
Systematic errors in connectivity inferred from activity in strongly recurrent networks.
Nat Neurosci. 2020 Oct;23(10):1286-1296. doi: 10.1038/s41593-020-0699-2. Epub 2020 Sep 7.
6
Assessing directed information as a method for inferring functional connectivity in neural ensembles.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7324-7. doi: 10.1109/IEMBS.2011.6091708.
7
Estimation of Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome.
PLoS Comput Biol. 2016 Mar 16;12(3):e1004762. doi: 10.1371/journal.pcbi.1004762. eCollection 2016 Mar.
8
From correlation to causation: Estimating effective connectivity from zero-lag covariances of brain signals.
PLoS Comput Biol. 2018 Mar 26;14(3):e1006056. doi: 10.1371/journal.pcbi.1006056. eCollection 2018 Mar.
9
Total spiking probability edges: A cross-correlation based method for effective connectivity estimation of cortical spiking neurons.
J Neurosci Methods. 2019 Jan 15;312:169-181. doi: 10.1016/j.jneumeth.2018.11.013. Epub 2018 Nov 27.
10
Simultaneous measurement of membrane potential changes in multiple pattern generating neurons using voltage sensitive dye imaging.
J Neurosci Methods. 2012 Jan 15;203(1):78-88. doi: 10.1016/j.jneumeth.2011.09.015. Epub 2011 Sep 22.

引用本文的文献

1
Maximum likelihood estimation of spatially dependent interactions in large populations of cortical neurons.
Front Comput Neurosci. 2025 Aug 13;19:1639829. doi: 10.3389/fncom.2025.1639829. eCollection 2025.
3
Neural Estimator of Information for Time-Series Data with Dependency.
Entropy (Basel). 2021 May 21;23(6):641. doi: 10.3390/e23060641.
4
Addressing indirect frequency coupling via partial generalized coherence.
Sci Rep. 2021 Mar 22;11(1):6535. doi: 10.1038/s41598-021-85677-6.
5
Inferring functional connectivity through graphical directed information.
J Neural Eng. 2021 Mar 30;18(4). doi: 10.1088/1741-2552/abecc6.
7
Inferring neural information flow from spiking data.
Comput Struct Biotechnol J. 2020 Sep 20;18:2699-2708. doi: 10.1016/j.csbj.2020.09.007. eCollection 2020.
9
Reconstructing neuronal circuitry from parallel spike trains.
Nat Commun. 2019 Oct 2;10(1):4468. doi: 10.1038/s41467-019-12225-2.

本文引用的文献

1
Analysis of complex neural circuits with nonlinear multidimensional hidden state models.
Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6538-43. doi: 10.1073/pnas.1606280113. Epub 2016 May 24.
2
Memory Formation in Tritonia via Recruitment of Variably Committed Neurons.
Curr Biol. 2015 Nov 16;25(22):2879-88. doi: 10.1016/j.cub.2015.09.033. Epub 2015 Nov 5.
4
The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference.
J Neurosci Methods. 2014 Feb 15;223:50-68. doi: 10.1016/j.jneumeth.2013.10.018. Epub 2013 Nov 5.
5
Successful reconstruction of a physiological circuit with known connectivity from spiking activity alone.
PLoS Comput Biol. 2013;9(7):e1003138. doi: 10.1371/journal.pcbi.1003138. Epub 2013 Jul 11.
6
Teaching basic principles of neuroscience with computer simulations.
J Undergrad Neurosci Educ. 2006 Spring;4(2):A40-52. Epub 2006 Jun 15.
7
A neural circuit for spatial summation in visual cortex.
Nature. 2012 Oct 11;490(7419):226-31. doi: 10.1038/nature11526.
8
The brain activity map project and the challenge of functional connectomics.
Neuron. 2012 Jun 21;74(6):970-4. doi: 10.1016/j.neuron.2012.06.006.
9
Assessing functional connectivity of neural ensembles using directed information.
J Neural Eng. 2012 Apr;9(2):026004. doi: 10.1088/1741-2560/9/2/026004. Epub 2012 Feb 13.
10
A Granger causality measure for point process models of ensemble neural spiking activity.
PLoS Comput Biol. 2011 Mar;7(3):e1001110. doi: 10.1371/journal.pcbi.1001110. Epub 2011 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验