Suppr超能文献

更频繁地进行检测是否会缩短疾病进展检测时间?

Does Testing More Frequently Shorten the Time to Detect Disease Progression?

作者信息

Ledolter Johannes, Kardon Randy H

机构信息

Departments of Management Sciences/Statistics & Actuarial Science, University of Iowa, Iowa City, IA, USA.

Department of Ophthalmology and Visual Sciences, University of Iowa Hospital and Clinics and Iowa City VA Medical Center, Iowa City, IA, USA.

出版信息

Transl Vis Sci Technol. 2017 May 1;6(3):1. doi: 10.1167/tvst.6.3.1. eCollection 2017 May.

Abstract

PURPOSE

With the rise of smartphone devices to monitor health status remotely, it is tempting to conclude that sampling more often will provide a more sensitive means of detecting changes in health status earlier over time, when interventions may improve outcomes.

METHODS

The answer to this question is derived in the context of a model where observations are generated from a linear-trend model with independent as well as autocorrelated autoregressive-moving average, or ARMA(1,1), errors.

RESULTS

The results imply a cautionary message that an increase in the sampling frequency may not always lead to a faster detection of trend changes. The benefit of rapid successive observations depends on how observations, taken closely together in time, are correlated.

CONCLUSIONS

Shortening the observation period by half can be accomplished by increasing the number of independent observations to maintain the same power for detecting change over time. However, a strategy to detect progression of disease sooner by taking numerous closely spaced measurements over a shortened interval is limited by the degree of autocorrelation among adjacent observations. We provide a statistical model of disease progression that allows for autocorrelation among successive measurements, and obtain the power of detecting a linear change of specified magnitude when equal-spaced observations are taken over a given time interval.

TRANSLATIONAL RELEVANCE

New emerging technology for home monitoring of visual function will provide a means to monitor sensory status more frequently. The model proposed here takes into account how successive measurements are correlated, which impacts the number of measurements needed to detect a significant change in status.

摘要

目的

随着用于远程监测健康状况的智能手机设备的兴起,很容易得出这样的结论:随着时间的推移,更频繁地采样将提供一种更灵敏的手段,以便在干预可能改善结果时更早地检测健康状况的变化。

方法

这个问题的答案是在一个模型的背景下得出的,在该模型中,观测值是由一个线性趋势模型生成的,该模型具有独立以及自相关的自回归移动平均(ARMA(1,1))误差。

结果

结果暗示了一个警示信息,即采样频率的增加并不总是会导致更快地检测到趋势变化。快速连续观测的益处取决于在时间上紧密相邻的观测值之间的相关性。

结论

通过增加独立观测值的数量以保持随时间检测变化的相同效能,可以将观测期缩短一半。然而,通过在较短间隔内进行大量紧密间隔的测量来更快检测疾病进展的策略受到相邻观测值之间自相关程度的限制。我们提供了一个疾病进展的统计模型,该模型考虑了连续测量之间的自相关性,并在给定时间间隔内进行等间隔观测时,获得检测指定幅度线性变化的效能。

转化相关性

用于家庭视觉功能监测的新兴技术将提供一种更频繁地监测感觉状态的方法。这里提出的模型考虑了连续测量之间的相关性,这会影响检测状态显著变化所需的测量次数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/547e/5412967/491a78fc2ee4/i2164-2591-6-3-1-f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验