Suppr超能文献

基于面向文档局部特征的无监督历史手写文档图像文字定位。

Unsupervised Word Spotting in Historical Handwritten Document Images Using Document-Oriented Local Features.

出版信息

IEEE Trans Image Process. 2017 Aug;26(8):4032-4041. doi: 10.1109/TIP.2017.2700721. Epub 2017 May 3.

Abstract

Word spotting strategies employed in historical handwritten documents face many challenges due to variation in the writing style and intense degradation. In this paper, a new method that permits effective word spotting in handwritten documents is presented that it relies upon document-oriented local features, which take into account information around representative keypoints as well a matching process that incorporates spatial context in a local proximity search without using any training data. Experimental results on four historical handwritten data sets for two different scenarios (segmentation-based and segmentation-free) using standard evaluation measures show the improved performance achieved by the proposed methodology.

摘要

由于书写风格和严重退化的差异,历史手写文档中使用的字词定位策略面临许多挑战。本文提出了一种新的方法,该方法允许在手写文档中进行有效的字词定位,它依赖于面向文档的局部特征,这些特征考虑了代表性关键点周围的信息以及匹配过程,该过程在不使用任何训练数据的情况下在局部临近搜索中结合了空间上下文。使用标准评估指标对四个历史手写数据集进行了两种不同场景(基于分割和无分割)的实验,结果表明所提出的方法可以提高性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验