Suppr超能文献

通过辅助场量子蒙特卡罗中的关联采样实现化学精度的化学转变。

Chemical Transformations Approaching Chemical Accuracy via Correlated Sampling in Auxiliary-Field Quantum Monte Carlo.

机构信息

Department of Chemistry, Columbia University , 3000 Broadway, New York, New York 10027, United States.

Department of Physics, College of William and Mary , Williamsburg, Virginia 23187-8795, United States.

出版信息

J Chem Theory Comput. 2017 Jun 13;13(6):2667-2680. doi: 10.1021/acs.jctc.7b00224. Epub 2017 May 16.

Abstract

The exact and phaseless variants of auxiliary-field quantum Monte Carlo (AFQMC) have been shown to be capable of producing accurate ground-state energies for a wide variety of systems including those which exhibit substantial electron correlation effects. The computational cost of performing these calculations has to date been relatively high, impeding many important applications of these approaches. Here we present a correlated sampling methodology for AFQMC which relies on error cancellation to dramatically accelerate the calculation of energy differences of relevance to chemical transformations. In particular, we show that our correlated sampling-based AFQMC approach is capable of calculating redox properties, deprotonation free energies, and hydrogen abstraction energies in an efficient manner without sacrificing accuracy. We validate the computational protocol by calculating the ionization potentials and electron affinities of the atoms contained in the G2 test set and then proceed to utilize a composite method, which treats fixed-geometry processes with correlated sampling-based AFQMC and relaxation energies via MP2, to compute the ionization potential, deprotonation free energy, and the O-H bond disocciation energy of methanol, all to within chemical accuracy. We show that the efficiency of correlated sampling relative to uncorrelated calculations increases with system and basis set size and that correlated sampling greatly reduces the required number of random walkers to achieve a target statistical error. This translates to CPU-time speed-up factors of 55, 25, and 24 for the ionization potential of the K atom, the deprotonation of methanol, and hydrogen abstraction from the O-H bond of methanol, respectively. We conclude with a discussion of further efficiency improvements that may open the door to the accurate description of chemical processes in complex systems.

摘要

辅助场量子蒙特卡罗(AFQMC)的精确相无变量形式已经被证明能够为各种系统产生准确的基态能量,包括那些表现出大量电子相关效应的系统。迄今为止,执行这些计算的计算成本相对较高,阻碍了这些方法的许多重要应用。在这里,我们提出了一种基于相关采样的 AFQMC 方法,该方法依赖于误差消除来显著加速与化学转化相关的能量差的计算。具体来说,我们表明,我们基于相关采样的 AFQMC 方法能够以有效的方式计算氧化还原性质、去质子化自由能和氢提取能,而不会牺牲准确性。我们通过计算 G2 测试集中原子的电离势和电子亲和能来验证计算协议,然后利用一种复合方法,该方法通过 MP2 处理固定几何形状的过程,并通过 AFQMC 处理相关采样和松弛能,来计算甲醇的电离势、去质子化自由能和 O-H 键离解能,均达到化学精度。我们表明,与非相关计算相比,相关采样的效率随着系统和基组大小的增加而增加,并且相关采样大大减少了实现目标统计误差所需的随机行走者数量。这分别转化为 K 原子的电离势、甲醇的去质子化和甲醇中 O-H 键的氢提取的 CPU 时间加速因子为 55、25 和 24。最后,我们讨论了进一步提高效率的可能性,这可能为复杂系统中化学过程的准确描述开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验