Suppr超能文献

通过学习关键特征的人工神经网络进行关键发现。

Key-finding by artificial neural networks that learn about key profiles.

作者信息

Dawson Michael R W, Zielinski Jasen A Z

机构信息

Biological Computation Project, Department of Psychology, University of Alberta.

出版信息

Can J Exp Psychol. 2018 Sep;72(3):153-170. doi: 10.1037/cep0000135. Epub 2017 May 8.

Abstract

We explore the ability of a very simple artificial neural network, a perceptron, to assert the musical key of novel stimuli. First, perceptrons are trained to associate standardized key profiles (taken from 1 of 3 different sources) to different musical keys. After training, we measured perceptron accuracy in asserting musical keys for 296 novel stimuli. Depending upon which key profiles were used during training, perceptrons can perform as well as established key-finding algorithms on this task. Further analyses indicate that perceptrons generate higher activity in a unit representing a selected key and much lower activities in the units representing the competing keys that are not selected than does a traditional algorithm. Finally, we examined the internal structure of trained perceptrons and discovered that they, unlike traditional algorithms, assign very different weights to different components of a key profile. Perceptrons learn that some profile components are more important for specifying musical key than are others. These differential weights could be incorporated into traditional algorithms that do not themselves employ artificial neural networks. (PsycINFO Database Record

摘要

我们探究了一种非常简单的人工神经网络——感知器,用于确定新刺激的调式的能力。首先,训练感知器将标准化的调式轮廓(取自3个不同来源中的1个)与不同的音乐调式相关联。训练后,我们测量了感知器在确定296种新刺激的音乐调式时的准确性。根据训练期间使用的调式轮廓不同,感知器在这项任务中的表现可以与既定的调式查找算法相媲美。进一步的分析表明,与传统算法相比,感知器在代表所选调式的单元中产生更高的活动,而在代表未被选中的竞争调式的单元中产生的活动则低得多。最后,我们检查了训练后的感知器的内部结构,发现与传统算法不同,它们对调式轮廓的不同组成部分赋予了非常不同的权重。感知器了解到,某些轮廓成分对于指定音乐调式比其他成分更重要。这些不同的权重可以纳入本身不使用人工神经网络的传统算法中。(《心理学文摘数据库记录》 )

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验