Chemistry Department, University of Michigan , Ann Arbor, Michigan 48109, United States.
Materials Science and Engineering, The Ohio State University , Columbus, Ohio 43210, United States.
J Am Chem Soc. 2017 May 24;139(20):6960-6968. doi: 10.1021/jacs.7b01968. Epub 2017 May 9.
Deposition of epitaxial germanium (Ge) thin films on silicon (Si) wafers has been achieved over large areas with aqueous feedstock solutions using electrochemical liquid phase epitaxy (ec-LPE) at low temperatures (T ≤ 90 °C). The ec-LPE method uniquely blends the simplicity and control of traditional electrodeposition with the material quality of melt growth. A new electrochemical cell design based on the compression of a liquid metal electrode into a thin cavity that enables ec-LPE is described. The epitaxial nature, low strain character, and crystallographic defect content of the resultant solid Ge films were analyzed by electron backscatter diffraction, scanning transmission electron microscopy, high resolution X-ray diffraction, and electron channeling contrast imaging. The results here show the first step toward a manufacturing infrastructure for traditional crystalline inorganic semiconductor epifilms that does not require high temperature, gaseous precursors, or complex apparatus.
已经通过使用电化学液相外延(ec-LPE)在低温(T ≤ 90°C)下,从水溶液原料中实现了大面积的硅(Si)晶片上外延锗(Ge)薄膜的沉积。ec-LPE 方法独特地将传统电沉积的简单性和可控性与熔体生长的材料质量结合在一起。描述了一种新的基于将液态金属电极压缩成薄腔的电化学电池设计,该设计可实现 ec-LPE。通过电子背散射衍射、扫描透射电子显微镜、高分辨率 X 射线衍射和电子通道对比成像,分析了所得固体 Ge 薄膜的外延性质、低应变特性和晶体缺陷含量。这些结果展示了迈向传统结晶无机半导体外延薄膜制造基础的第一步,该方法不需要高温、气态前体或复杂的设备。