Suppr超能文献

超导电路量子强化学习的基本协议。

Basic protocols in quantum reinforcement learning with superconducting circuits.

机构信息

Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080, Bilbao, Spain.

出版信息

Sci Rep. 2017 May 9;7(1):1609. doi: 10.1038/s41598-017-01711-6.

Abstract

Superconducting circuit technologies have recently achieved quantum protocols involving closed feedback loops. Quantum artificial intelligence and quantum machine learning are emerging fields inside quantum technologies which may enable quantum devices to acquire information from the outer world and improve themselves via a learning process. Here we propose the implementation of basic protocols in quantum reinforcement learning, with superconducting circuits employing feedback- loop control. We introduce diverse scenarios for proof-of-principle experiments with state-of-the-art superconducting circuit technologies and analyze their feasibility in presence of imperfections. The field of quantum artificial intelligence implemented with superconducting circuits paves the way for enhanced quantum control and quantum computation protocols.

摘要

超导电路技术最近已经实现了涉及闭环反馈的量子协议。量子人工智能和量子机器学习是量子技术中的新兴领域,它们可能使量子设备能够从外部世界获取信息,并通过学习过程来提高自身性能。在这里,我们提出了使用反馈回路控制的超导电路来实现量子强化学习中的基本协议。我们介绍了使用最先进的超导电路技术进行原理验证实验的各种场景,并分析了它们在存在不完美情况下的可行性。超导电路实现的量子人工智能领域为增强量子控制和量子计算协议铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6398/5431677/c3afe321ee6d/41598_2017_1711_Fig1_HTML.jpg

相似文献

1
Basic protocols in quantum reinforcement learning with superconducting circuits.
Sci Rep. 2017 May 9;7(1):1609. doi: 10.1038/s41598-017-01711-6.
2
Multiqubit and multilevel quantum reinforcement learning with quantum technologies.
PLoS One. 2018 Jul 19;13(7):e0200455. doi: 10.1371/journal.pone.0200455. eCollection 2018.
3
Quantum control of bosonic modes with superconducting circuits.
Sci Bull (Beijing). 2021 Sep 15;66(17):1789-1805. doi: 10.1016/j.scib.2021.05.024. Epub 2021 May 31.
5
Quantum generative adversarial learning in a superconducting quantum circuit.
Sci Adv. 2019 Jan 25;5(1):eaav2761. doi: 10.1126/sciadv.aav2761. eCollection 2019 Jan.
7
Superconducting cavity electro-optics: A platform for coherent photon conversion between superconducting and photonic circuits.
Sci Adv. 2018 Aug 17;4(8):eaar4994. doi: 10.1126/sciadv.aar4994. eCollection 2018 Aug.
8
Two-dimensional lattice gauge theories with superconducting quantum circuits.
Ann Phys (N Y). 2014 Dec;351:634-654. doi: 10.1016/j.aop.2014.09.011.
9
Preparation and measurement of three-qubit entanglement in a superconducting circuit.
Nature. 2010 Sep 30;467(7315):574-8. doi: 10.1038/nature09416.
10
Exploiting Dynamic Quantum Circuits in a Quantum Algorithm with Superconducting Qubits.
Phys Rev Lett. 2021 Sep 3;127(10):100501. doi: 10.1103/PhysRevLett.127.100501.

引用本文的文献

1
A Variational Quantum Linear Solver Application to Discrete Finite-Element Methods.
Entropy (Basel). 2023 Mar 28;25(4):580. doi: 10.3390/e25040580.
2
Experimental semi-autonomous eigensolver using reinforcement learning.
Sci Rep. 2021 Jun 10;11(1):12241. doi: 10.1038/s41598-021-90534-7.
3
A high-bias, low-variance introduction to Machine Learning for physicists.
Phys Rep. 2019 May 30;810:1-124. doi: 10.1016/j.physrep.2019.03.001. Epub 2019 Mar 14.
4
Quantum Artificial Life in an IBM Quantum Computer.
Sci Rep. 2018 Oct 4;8(1):14793. doi: 10.1038/s41598-018-33125-3.
5
Multiqubit and multilevel quantum reinforcement learning with quantum technologies.
PLoS One. 2018 Jul 19;13(7):e0200455. doi: 10.1371/journal.pone.0200455. eCollection 2018.
6
Supervised Quantum Learning without Measurements.
Sci Rep. 2017 Oct 20;7(1):13645. doi: 10.1038/s41598-017-13378-0.
7
Quantum machine learning.
Nature. 2017 Sep 13;549(7671):195-202. doi: 10.1038/nature23474.

本文引用的文献

1
Learning an unknown transformation via a genetic approach.
Sci Rep. 2017 Oct 30;7(1):14316. doi: 10.1038/s41598-017-14680-7.
2
Supervised Quantum Learning without Measurements.
Sci Rep. 2017 Oct 20;7(1):13645. doi: 10.1038/s41598-017-13378-0.
3
Quantum information processing with superconducting circuits: a review.
Rep Prog Phys. 2017 Oct;80(10):106001. doi: 10.1088/1361-6633/aa7e1a. Epub 2017 Jul 6.
4
Advanced-Retarded Differential Equations in Quantum Photonic Systems.
Sci Rep. 2017 Feb 23;7:42933. doi: 10.1038/srep42933.
5
Quantum Memristors with Superconducting Circuits.
Sci Rep. 2017 Feb 14;7:42044. doi: 10.1038/srep42044.
6
Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System.
Phys Rev Lett. 2016 Dec 16;117(25):250502. doi: 10.1103/PhysRevLett.117.250502. Epub 2016 Dec 13.
7
Quantum-Enhanced Machine Learning.
Phys Rev Lett. 2016 Sep 23;117(13):130501. doi: 10.1103/PhysRevLett.117.130501. Epub 2016 Sep 20.
8
Quantum memristors.
Sci Rep. 2016 Jul 6;6:29507. doi: 10.1038/srep29507.
9
Digitized adiabatic quantum computing with a superconducting circuit.
Nature. 2016 Jun 9;534(7606):222-6. doi: 10.1038/nature17658.
10
Artificial Life in Quantum Technologies.
Sci Rep. 2016 Feb 8;6:20956. doi: 10.1038/srep20956.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验