Shaddox Trevor R, Ryan Patrick B, Schuemie Martijn J, Madigan David, Suchard Marc A
Department of Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A.
Janssen Research and Development LLC, Titusville, New Jersey USA.
Stat Anal Data Min. 2016 Aug;9(4):260-268. doi: 10.1002/sam.11324. Epub 2016 Jul 17.
Clinical trials often lack power to identify rare adverse drug events (ADEs) and therefore cannot address the threat rare ADEs pose, motivating the need for new ADE detection techniques. Emerging national patient claims and electronic health record databases have inspired post-approval early detection methods like the Bayesian self-controlled case series (BSCCS) regression model. Existing BSCCS models do not account for multiple outcomes, where pathology may be shared across different ADEs. We integrate a pathology hierarchy into the BSCCS model by developing a novel informative hierarchical prior linking outcome-specific effects. Considering shared pathology drastically increases the dimensionality of the already massive models in this field. We develop an efficient method for coping with the dimensionality expansion by reducing the hierarchical model to a form amenable to existing tools. Through a synthetic study we demonstrate decreased bias in risk estimates for drugs when using conditions with different true risk and unequal prevalence. We also examine observational data from the MarketScan Lab Results dataset, exposing the bias that results from aggregating outcomes, as previously employed to estimate risk trends of warfarin and dabigatran for intracranial hemorrhage and gastrointestinal bleeding. We further investigate the limits of our approach by using extremely rare conditions. This research demonstrates that analyzing multiple outcomes simultaneously is feasible at scale and beneficial.
临床试验往往缺乏识别罕见药物不良事件(ADEs)的效力,因此无法应对罕见ADEs所构成的威胁,这激发了对新的ADE检测技术的需求。新兴的全国患者索赔和电子健康记录数据库催生了贝叶斯自控病例系列(BSCCS)回归模型等批准后早期检测方法。现有的BSCCS模型未考虑多种结果,而不同的ADEs可能存在共同的病理情况。我们通过开发一种新颖的信息分层先验来连接特定结果效应,将病理层次结构整合到BSCCS模型中。考虑到共同的病理情况会极大地增加该领域中本就庞大的模型的维度。我们通过将分层模型简化为适合现有工具的形式,开发了一种应对维度扩展的有效方法。通过一项综合研究,我们证明在使用具有不同真实风险和不等患病率的疾病时,药物风险估计的偏差会降低。我们还检查了来自MarketScan实验室结果数据集的观察数据,揭示了汇总结果时产生的偏差,如之前用于估计华法林和达比加群颅内出血和胃肠道出血的风险趋势。我们通过使用极其罕见的疾病进一步研究了我们方法的局限性。这项研究表明,大规模同时分析多种结果是可行且有益的。