Suppr超能文献

使用带有内部验证数据的多重填补法校正结局误分类的风险比估计值。

Correcting hazard ratio estimates for outcome misclassification using multiple imputation with internal validation data.

作者信息

Ni Jiayi, Leong Aaron, Dasgupta Kaberi, Rahme Elham

机构信息

Research Institute of the McGill University Health Centre, Montréal, QC, Canada.

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada.

出版信息

Pharmacoepidemiol Drug Saf. 2017 Aug;26(8):925-934. doi: 10.1002/pds.4223. Epub 2017 May 15.

Abstract

OBJECTIVE

Outcome misclassification may occur in observational studies using administrative databases. We evaluated a two-step multiple imputation approach based on complementary internal validation data obtained from two subsamples of study participants to reduce bias in hazard ratio (HR) estimates in Cox regressions.

METHODS

We illustrated this approach using data from a surveyed sample of 6247 individuals in a study of statin-diabetes association in Quebec. We corrected diabetes status and onset assessed from health administrative data against self-reported diabetes and/or elevated fasting blood glucose (FBG) assessed in subsamples. The association between statin use and new onset diabetes was evaluated using administrative data and the corrected data. By simulation, we assessed the performance of this method varying the true HR, sensitivity, specificity, and the size of validation subsamples.

RESULTS

The adjusted HR of new onset diabetes among statin users versus non-users was 1.61 (95% confidence interval: 1.09-2.38) using administrative data only, 1.49 (0.95-2.34) when diabetes status and onset were corrected based on self-report and undiagnosed diabetes (FBG ≥ 7 mmol/L), and 1.36 (0.92-2.01) when corrected for self-report and undiagnosed diabetes/impaired FBG (≥ 6 mmol/L). In simulations, the multiple imputation approach yielded less biased HR estimates and appropriate coverage for both non-differential and differential misclassification. Large variations in the corrected HR estimates were observed using validation subsamples with low participation proportion. The bias correction was sometimes outweighed by the uncertainty introduced by the unknown time of event occurrence.

CONCLUSION

Multiple imputation is useful to correct for outcome misclassification in time-to-event analyses if complementary validation data are available from subsamples. Copyright © 2017 John Wiley & Sons, Ltd.

摘要

目的

在使用行政数据库的观察性研究中可能会出现结果误分类的情况。我们评估了一种基于从研究参与者的两个子样本中获得的互补内部验证数据的两步多重填补方法,以减少Cox回归中风险比(HR)估计的偏差。

方法

我们使用魁北克一项关于他汀类药物与糖尿病关联研究中6247名个体的调查样本数据来说明这种方法。我们根据子样本中自我报告的糖尿病和/或空腹血糖(FBG)升高情况,对从卫生行政数据中评估的糖尿病状态和发病情况进行了校正。使用行政数据和校正后的数据评估他汀类药物使用与新发糖尿病之间的关联。通过模拟,我们评估了该方法在改变真实HR、敏感性、特异性以及验证子样本大小情况下的性能。

结果

仅使用行政数据时,他汀类药物使用者与非使用者相比新发糖尿病的校正HR为1.61(95%置信区间:1.09 - 2.38);当根据自我报告和未诊断糖尿病(FBG≥7 mmol/L)校正糖尿病状态和发病情况时,校正HR为1.49(0.95 - 2.34);当根据自我报告和未诊断糖尿病/空腹血糖受损(≥6 mmol/L)进行校正时,校正HR为1.36(0.92 - 2.01)。在模拟中,多重填补方法产生的HR估计偏差较小,对于非差异和差异误分类均有适当的覆盖范围。使用参与比例较低的验证子样本时,校正后的HR估计值存在较大差异。偏差校正有时会被事件发生时间未知所引入的不确定性所抵消。

结论

如果可以从子样本中获得互补验证数据,多重填补对于在事件发生时间分析中校正结果误分类很有用。版权所有© 2017约翰威立父子有限公司。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验