Mirbozorgi S Abdollah, Yeon Pyungwoo, Ghovanloo Maysam
IEEE Trans Biomed Circuits Syst. 2017 Jun;11(3):692-702. doi: 10.1109/TBCAS.2017.2663358. Epub 2017 May 19.
This paper presents an inductive link for wireless power transmission (WPT) to mm-sized free-floating implants (FFIs) distributed in a large three-dimensional space in the neural tissue that is insensitive to the exact location of the receiver (Rx). The proposed structure utilizes a high-Q resonator on the target wirelessly powered plane that encompasses randomly positioned multiple FFIs, all powered by a large external transmitter (Tx). Based on resonant WPT fundamentals, we have devised a detailed method for optimization of the FFIs and explored design strategies and safety concerns, such as coil segmentation and specific absorption rate limits using realistic finite element simulation models in HFSS including head tissue layers, respectively. We have built several FFI prototypes to conduct accurate measurements and to characterize the performance of the proposed WPT method. Measurement results on 1-mm receivers operating at 60 MHz show power transfer efficiency and power delivered to the load at 2.4% and 1.3 mW, respectively, within 14-18 mm of Tx-Rx separation and 7 cm of brain surface.
本文提出了一种用于无线电力传输(WPT)的电感链路,该链路可传输至毫米级自由漂浮植入物(FFI),这些植入物分布在神经组织的大三维空间中,对接收器(Rx)的精确位置不敏感。所提出的结构在目标无线供电平面上利用了一个高Q谐振器,该平面包含随机定位的多个FFI,所有FFI均由一个大型外部发射器(Tx)供电。基于谐振WPT基本原理,我们设计了一种优化FFI的详细方法,并探索了设计策略和安全问题,例如分别使用HFSS中包含头部组织层的实际有限元仿真模型进行线圈分割和比吸收率限制。我们制作了几个FFI原型,以进行精确测量并表征所提出的WPT方法的性能。在60 MHz下运行的1毫米接收器的测量结果表明,在Tx-Rx分离距离为14 - 18毫米且距脑表面7厘米的范围内,功率传输效率和输送到负载的功率分别为2.4%和1.3毫瓦。