Fernandes H A, da Silva R, Caparica A A, de Felício J R Drugowich
Universidade Federal de Goiás - UFG, Campus Jataí,, Jataí-GO, 78000-000, Brazil.
Instituto de Física, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre - RS, 91501-970, Brazil.
Phys Rev E. 2017 Apr;95(4-1):042105. doi: 10.1103/PhysRevE.95.042105. Epub 2017 Apr 5.
We investigate the short-time universal behavior of the two-dimensional Ashkin-Teller model at the Baxter line by performing time-dependent Monte Carlo simulations. First, as preparatory results, we obtain the critical parameters by searching the optimal power-law decay of the magnetization. Thus, the dynamic critical exponents θ_{m} and θ_{p}, related to the magnetic and electric order parameters, as well as the persistence exponent θ_{g}, are estimated using heat-bath Monte Carlo simulations. In addition, we estimate the dynamic exponent z and the static critical exponents β and ν for both order parameters. We propose a refined method to estimate the static exponents that considers two different averages: one that combines an internal average using several seeds with another, which is taken over temporal variations in the power laws. Moreover, we also performed the bootstrapping method for a complementary analysis. Our results show that the ratio β/ν exhibits universal behavior along the critical line corroborating the conjecture for both magnetization and polarization.
我们通过进行含时蒙特卡罗模拟,研究了二维阿什金 - 泰勒模型在巴克斯特线上的短时普适行为。首先,作为预备结果,我们通过搜索磁化强度的最优幂律衰减来获得临界参数。因此,利用热浴蒙特卡罗模拟估计了与磁序参量和电序参量相关的动态临界指数(\theta_{m})和(\theta_{p}),以及持久指数(\theta_{g})。此外,我们还估计了两个序参量的动态指数(z)和静态临界指数(\beta)与(\nu)。我们提出了一种改进方法来估计静态指数,该方法考虑了两种不同的平均值:一种是使用多个初始值进行内部平均,另一种是对幂律中的时间变化进行平均。此外,我们还采用了自助法进行补充分析。我们的结果表明,沿着临界线,(\beta / \nu)的比值呈现出普适行为,这证实了关于磁化强度和极化的猜想。