Azpeitia J, Otero-Irurueta G, Palacio I, Martinez J I, Del Árbol N Ruiz, Santoro G, Gutiérrez A, Aballe L, Foerster M, Kalbac M, Vales V, Mompeán F J, García-Hernández M, Martín-Gago J A, Munuera C, López M F
Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, E-28049 Madrid, Spain.
Center for Mechanical Technology and Automation (TEMA-DEM), University of Aveiro, 3810-193 Aveiro, Portugal.
Carbon N Y. 2017 Aug;119:535-543. doi: 10.1016/j.carbon.2017.04.067.
We present a new protocol to grow large-area, high-quality single-layer graphene on Cu foils at relatively low temperatures. We use C molecules evaporated in ultra high vacuum conditions as carbon source. This clean environment results in a strong reduction of oxygen-containing groups as depicted by X-ray photoelectron spectroscopy (XPS). Unzipping of C is thermally promoted by annealing the substrate at 800ºC during evaporation. The graphene layer extends over areas larger than the Cu crystallite size, although it is changing its orientation with respect to the surface in the wrinkles and grain boundaries, producing a modulated ring in the low energy electron diffraction (LEED) pattern. This protocol is a self-limiting process leading exclusively to one single graphene layer. Raman spectroscopy confirms the high quality of the grown graphene. This layer exhibits an unperturbed Dirac-cone with a clear n-doping of 0.77 eV, which is caused by the interaction between graphene and substrate. Density functional theory (DFT) calculations show that this interaction can be induced by a coupling between graphene and substrate at specific points of the structure leading to a local sp configuration, which also contribute to the D-band in the Raman spectra.
我们提出了一种新的方法,可在相对较低的温度下在铜箔上生长大面积、高质量的单层石墨烯。我们使用在超高真空条件下蒸发的C分子作为碳源。如X射线光电子能谱(XPS)所示,这种清洁的环境使得含氧基显著减少。在蒸发过程中,通过在800ºC对衬底进行退火,热促进了C的解链。石墨烯层延伸的区域大于铜微晶尺寸,尽管它在褶皱和晶界处相对于表面改变了取向,在低能电子衍射(LEED)图案中产生了调制环。该方法是一个自限过程,仅产生单层石墨烯。拉曼光谱证实了所生长石墨烯的高质量。该层呈现出未受干扰的狄拉克锥,具有0.77 eV的明显n型掺杂,这是由石墨烯与衬底之间的相互作用引起的。密度泛函理论(DFT)计算表明,这种相互作用可由石墨烯与衬底在结构的特定点处的耦合诱导产生,导致局部sp构型,这也对拉曼光谱中的D带有所贡献。