Suppr超能文献

贝叶斯荟萃分析:样本间异质性的作用。

Bayesian meta-analysis: The role of the between-sample heterogeneity.

机构信息

1 Department of Statistics, University of Granada, Granada, Spain.

2 Department of Quantitative Methods and TiDES Institute, University of Las Palmas de Gran Canaria, Las Palmas, Spain.

出版信息

Stat Methods Med Res. 2018 Dec;27(12):3643-3657. doi: 10.1177/0962280217709837. Epub 2017 May 16.

Abstract

The random effect approach for meta-analysis was motivated by a lack of consistent assessment of homogeneity of treatment effect before pooling. The random effect model assumes that the distribution of the treatment effect is fully heterogenous across the experiments. However, other models arising by grouping some of the experiments are plausible. We illustrate on simulated binary experiments that the fully heterogenous model gives a poor meta-inference when fully heterogeneity is not the true model and that the knowledge of the true cluster model considerably improves the inference. We propose the use of a Bayesian model selection procedure for estimating the true cluster model, and Bayesian model averaging to incorporate into the meta-analysis the clustering estimation. A well-known meta-analysis for six major multicentre trials to assess the efficacy of a given dose of aspirin in post-myocardial infarction patients is reanalysed.

摘要

随机效应方法是由于在合并前缺乏对处理效果一致性的一致评估而产生的。随机效应模型假设治疗效果的分布在整个实验中完全异质。然而,通过对一些实验进行分组而产生的其他模型也是合理的。我们通过模拟二项实验来说明,当完全异质性不是真实模型时,完全异质模型会导致较差的荟萃后推断,并且对真实聚类模型的了解会极大地改善推断。我们建议使用贝叶斯模型选择程序来估计真实聚类模型,并使用贝叶斯模型平均将聚类估计纳入荟萃分析。重新分析了一项著名的荟萃分析,该分析对六次主要多中心试验进行了评估,以确定在心肌梗死后患者中给予特定剂量阿司匹林的疗效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验