Suppr超能文献

一维形态弹性模型及其在成纤维细胞填充胶原水凝胶中的应用。

A model for one-dimensional morphoelasticity and its application to fibroblast-populated collagen lattices.

机构信息

The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, 600113, India.

School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, 4001, Australia.

出版信息

Biomech Model Mechanobiol. 2017 Oct;16(5):1743-1763. doi: 10.1007/s10237-017-0917-3. Epub 2017 May 18.

Abstract

The mechanical behaviour of solid biological tissues has long been described using models based on classical continuum mechanics. However, the classical continuum theories of elasticity and viscoelasticity cannot easily capture the continual remodelling and associated structural changes in biological tissues. Furthermore, models drawn from plasticity theory are difficult to apply and interpret in this context, where there is no equivalent of a yield stress or flow rule. In this work, we describe a novel one-dimensional mathematical model of tissue remodelling based on the multiplicative decomposition of the deformation gradient. We express the mechanical effects of remodelling as an evolution equation for the effective strain, a measure of the difference between the current state and a hypothetical mechanically relaxed state of the tissue. This morphoelastic model combines the simplicity and interpretability of classical viscoelastic models with the versatility of plasticity theory. A novel feature of our model is that while most models describe growth as a continuous quantity, here we begin with discrete cells and develop a continuum representation of lattice remodelling based on an appropriate limit of the behaviour of discrete cells. To demonstrate the utility of our approach, we use this framework to capture qualitative aspects of the continual remodelling observed in fibroblast-populated collagen lattices, in particular its contraction and its subsequent sudden re-expansion when remodelling is interrupted.

摘要

固体生物组织的力学行为长期以来一直使用基于经典连续体力学的模型来描述。然而,弹性和粘弹性的经典连续体理论不容易捕捉生物组织中不断的重塑和相关的结构变化。此外,在这种没有屈服应力或流动规则的情况下,塑性理论中的模型很难应用和解释。在这项工作中,我们描述了一种基于变形梯度的乘法分解的组织重塑的新型一维数学模型。我们将重塑的力学效应表示为有效应变的演化方程,这是当前状态与组织假设的机械松弛状态之间的差异的度量。这种形态弹性模型将经典粘弹性模型的简单性和可解释性与塑性理论的多功能性结合在一起。我们模型的一个新特点是,虽然大多数模型将生长描述为连续量,但在这里我们从离散细胞开始,并基于离散细胞行为的适当极限开发了晶格重塑的连续体表示。为了展示我们方法的实用性,我们使用该框架来捕捉纤维母细胞填充的胶原蛋白格子中观察到的持续重塑的定性方面,特别是其收缩及其在重塑中断时的突然再次扩张。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验