Mahoney-Keck Center for Brain and Behavior Research, Department of Neuroscience, Columbia University College of Physicians and Surgeons, New York, NY 10032; email:
Department of Neuroscience, Columbia University College of Physicians and Surgeons, New York, NY 10032.
Annu Rev Vis Sci. 2016 Oct 14;2:61-84. doi: 10.1146/annurev-vision-082114-035407. Epub 2016 Aug 19.
A classic problem in psychology is understanding how the brain creates a stable and accurate representation of space for perception and action despite a constantly moving eye. Two mechanisms have been proposed to solve this problem: Herman von Helmholtz's idea that the brain uses a corollary discharge of the motor command that moves the eye to adjust the visual representation, and Sir Charles Sherrington's idea that the brain measures eye position to calculate a spatial representation. Here, we discuss the cognitive, neuropsychological, and physiological mechanisms that support each of these ideas. We propose that both are correct: A rapid corollary discharge signal remaps the visual representation before an impending saccade, computing accurate movement vectors; and an oculomotor proprioceptive signal enables the brain to construct a more accurate craniotopic representation of space that develops slowly after the saccade.
心理学中的一个经典问题是,尽管眼睛在不断移动,但大脑如何为感知和行动创造一个稳定而准确的空间表示。有两种机制被提出来解决这个问题:赫尔曼·冯·赫尔姆霍茨(Herman von Helmholtz)的观点认为,大脑使用眼球运动的副放电来调整视觉表示,而查尔斯·谢灵顿爵士(Sir Charles Sherrington)的观点则认为,大脑通过测量眼球位置来计算空间表示。在这里,我们讨论了支持这些观点的认知、神经心理学和生理机制。我们提出,两者都是正确的:快速的副放电信号在即将进行扫视之前重新映射视觉表示,计算出准确的运动向量;而眼球运动本体感觉信号使大脑能够构建一个更准确的头位空间表示,这个表示在扫视后缓慢发展。