Suppr超能文献

通过引入谷氨酸棒杆菌的谷氨酸合成特性来提高解淀粉芽孢杆菌中聚γ-谷氨酸的产量。

Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum.

作者信息

Feng Jun, Quan Yufen, Gu Yanyan, Liu Fenghong, Huang Xiaozhong, Shen Haosheng, Dang Yulei, Cao Mingfeng, Gao Weixia, Lu Xiaoyun, Wang Yi, Song Cunjiang, Wang Shufang

机构信息

Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China.

Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.

出版信息

Microb Cell Fact. 2017 May 22;16(1):88. doi: 10.1186/s12934-017-0704-y.

Abstract

BACKGROUND

Poly-γ-glutamic acid (γ-PGA) is a valuable polymer with glutamate as its sole precursor. Enhancement of the intracellular glutamate synthesis is a very important strategy for the improvement of γ-PGA production, especially for those glutamate-independent γ-PGA producing strains. Corynebacterium glutamicum has long been used for industrial glutamate production and it exhibits some unique features for glutamate synthesis; therefore introduction of these metabolic characters into the γ-PGA producing strain might lead to increased intracellular glutamate availability, and thus ultimate γ-PGA production.

RESULTS

In this study, the unique glutamate synthesis features from C. glutamicum was introduced into the glutamate-independent γ-PGA producing Bacillus amyloliquefaciens NK-1 strain. After introducing the energy-saving NADPH-dependent glutamate dehydrogenase (NADPH-GDH) pathway, the NK-1 (pHT315-gdh) strain showed slightly increase (by 9.1%) in γ-PGA production. Moreover, an optimized metabolic toggle switch for controlling the expression of ɑ-oxoglutarate dehydrogenase complex (ODHC) was introduced into the NK-1 strain, because it was previously shown that the ODHC in C. glutamicum was completely inhibited when glutamate was actively produced. The obtained NK-PO1 (pHT01-xylR) strain showed 66.2% higher γ-PGA production than the NK-1 strain. However, the further combination of these two strategies (introducing both NADPH-GDH pathway and the metabolic toggle switch) did not lead to further increase of γ-PGA production but rather the resultant γ-PGA production was even lower than that in the NK-1 strain.

CONCLUSIONS

We proposed new metabolic engineering strategies to improve the γ-PGA production in B. amyloliquefaciens. The NK-1 (pHT315-gdh) strain with the introduction of NADPH-GDH pathway showed 9.1% improvement in γ-PGA production. The NK-PO1 (pHT01-xylR) strain with the introduction of a metabolic toggle switch for controlling the expression of ODHC showed 66.2% higher γ-PGA production than the NK-1 strain. This work proposed a new strategy for improving the target product in microbial cell factories.

摘要

背景

聚γ-谷氨酸(γ-PGA)是一种以谷氨酸为唯一前体的重要聚合物。增强细胞内谷氨酸的合成是提高γ-PGA产量的一项非常重要的策略,特别是对于那些不依赖谷氨酸的γ-PGA生产菌株。谷氨酸棒杆菌长期以来一直用于工业生产谷氨酸,并且在谷氨酸合成方面表现出一些独特的特性;因此,将这些代谢特性引入γ-PGA生产菌株可能会导致细胞内谷氨酸可用性增加,从而最终提高γ-PGA产量。

结果

在本研究中,将谷氨酸棒杆菌独特的谷氨酸合成特性引入不依赖谷氨酸的γ-PGA生产菌株解淀粉芽孢杆菌NK-1中。引入节能型依赖NADPH的谷氨酸脱氢酶(NADPH-GDH)途径后,NK-1(pHT315-gdh)菌株的γ-PGA产量略有增加(提高了9.1%)。此外,由于先前已表明在谷氨酸大量产生时,谷氨酸棒杆菌中的α-酮戊二酸脱氢酶复合体(ODHC)会被完全抑制,因此将一种用于控制ODHC表达的优化代谢切换开关引入NK-1菌株。获得的NK-PO1(pHT01-xylR)菌株的γ-PGA产量比NK-1菌株高66.2%。然而,这两种策略(同时引入NADPH-GDH途径和代谢切换开关)的进一步组合并未导致γ-PGA产量进一步增加,反而最终的γ-PGA产量甚至低于NK-1菌株。

结论

我们提出了新的代谢工程策略来提高解淀粉芽孢杆菌中γ-PGA的产量。引入NADPH-GDH途径的NK-1(pHT315-gdh)菌株的γ-PGA产量提高了9.1%。引入用于控制ODHC表达的代谢切换开关的NK-PO1(pHT01-xylR)菌株的γ-PGA产量比NK-1菌株高66.2%。这项工作为改善微生物细胞工厂中的目标产物提出了一种新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dad1/5440981/108aa8d2bd36/12934_2017_704_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验