Tang Yu-Hang, Lu Lu, Li He, Evangelinos Constantinos, Grinberg Leopold, Sachdeva Vipin, Karniadakis George Em
Division of Applied Mathematics, Brown University, Providence, Rhode Island.
IBM T.J. Watson Research Center, Cambridge, Massachusetts.
Biophys J. 2017 May 23;112(10):2030-2037. doi: 10.1016/j.bpj.2017.04.020.
We present OpenRBC, a coarse-grained molecular dynamics code, which is capable of performing an unprecedented in silico experiment-simulating an entire mammal red blood cell lipid bilayer and cytoskeleton as modeled by multiple millions of mesoscopic particles-using a single shared memory commodity workstation. To achieve this, we invented an adaptive spatial-searching algorithm to accelerate the computation of short-range pairwise interactions in an extremely sparse three-dimensional space. The algorithm is based on a Voronoi partitioning of the point cloud of coarse-grained particles, and is continuously updated over the course of the simulation. The algorithm enables the construction of the key spatial searching data structure in our code, i.e., a lattice-free cell list, with a time and space cost linearly proportional to the number of particles in the system. The position and the shape of the cells also adapt automatically to the local density and curvature. The code implements OpenMP parallelization and scales to hundreds of hardware threads. It outperforms a legacy simulator by almost an order of magnitude in time-to-solution and >40 times in problem size, thus providing, to our knowledge, a new platform for probing the biomechanics of red blood cells.
我们展示了OpenRBC,这是一个粗粒度分子动力学代码,它能够使用单个共享内存商用工作站进行前所未有的计算机模拟实验——模拟由数百万个介观粒子建模的整个哺乳动物红细胞脂质双层和细胞骨架。为实现这一点,我们发明了一种自适应空间搜索算法,以加速在极其稀疏的三维空间中短程成对相互作用的计算。该算法基于粗粒度粒子点云的Voronoi划分,并在模拟过程中不断更新。该算法能够在我们的代码中构建关键的空间搜索数据结构,即无晶格单元列表,其时间和空间成本与系统中粒子的数量成线性比例。单元的位置和形状也会自动适应局部密度和曲率。该代码实现了OpenMP并行化,并可扩展到数百个硬件线程。在求解时间上,它比传统模拟器快近一个数量级,在问题规模上快40多倍,因此据我们所知,它为探索红细胞生物力学提供了一个新平台。