Suppr超能文献

多级逻辑回归分析中的中级和高级主题。

Intermediate and advanced topics in multilevel logistic regression analysis.

作者信息

Austin Peter C, Merlo Juan

机构信息

Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada.

Institute of Health Management, Policy, and Evaluation, University of Toronto, Toronto, Ontario, Canada.

出版信息

Stat Med. 2017 Sep 10;36(20):3257-3277. doi: 10.1002/sim.7336. Epub 2017 May 23.

Abstract

Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher-level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within-cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population-average effect of covariates measured at the subject and cluster level, in contrast to the within-cluster or cluster-specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster-level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

摘要

多水平数据在卫生服务、人口与公共卫生以及流行病学研究中频繁出现。在这类研究中,二元结局很常见。多水平逻辑回归模型使人们在估计个体特征和聚类特征对个体结局的影响时,能够考虑到个体在更高层次单元聚类中的聚集情况。对PubMed数据库的检索表明,多水平或分层回归模型的使用正在迅速增加。然而,我们的印象是,许多分析人员只是简单地使用多水平回归模型来处理由聚类引起的聚类内同质性问题。在本文中,我们描述了一系列可以补充多水平逻辑回归模型拟合的分析方法。这些辅助分析使分析人员能够估计在个体和聚类水平上测量的协变量的边际或总体平均效应,这与原始多水平逻辑回归模型产生的聚类内或特定于聚类的效应形成对比。我们描述了区间优势比和对立优势比的比例,它们是聚类水平协变量效应的汇总度量。我们描述了方差划分系数和中位数优势比,它们是结局中方差和异质性成分的度量。这些度量使人们能够量化一般背景效应的大小。我们描述了一种R度量,它使分析人员能够量化不同多水平逻辑回归模型所解释的变异比例。我们通过分析诊断为急性心肌梗死住院患者的死亡率来说明这些度量的应用和解释。© 2017作者。《医学统计学》由John Wiley & Sons Ltd出版。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03d9/5575471/9a7c84b92a86/SIM-36-3257-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验