Suppr超能文献

关于使用几何建模预测主动脉瘤破裂

On the Use of Geometric Modeling to Predict Aortic Aneurysm Rupture.

作者信息

Muluk Sruthi L, Muluk Pallavi D, Shum Judy, Finol Ender A

机构信息

Harvard College, Cambridge, MA.

The Ellis School, Pittsburgh, PA.

出版信息

Ann Vasc Surg. 2017 Oct;44:190-196. doi: 10.1016/j.avsg.2017.05.014. Epub 2017 May 22.

Abstract

BACKGROUND

Currently, the risk of abdominal aortic aneurysm (AAA) rupture is determined using the maximum diameter (D) of the aorta. We sought in this study to identify a set of computed tomography (CT)-based geometric parameters that would better predict the risk of rupture than D.

METHODS

We obtained CT scans from 180 patients (90 ruptured AAA and 90 elective AAA repair) and then used automated software to calculate 1- , 2- , and 3-dimensional geometric parameters for each AAA. Linear regression was used to identify univariate correlates of membership in the rupture group. We then used stepwise backward elimination to generate a logistic regression model for prediction of rupture.

RESULTS

Linear regression identified 40 correlates of rupture. Following stepwise backward elimination, we developed a multivariate logistic regression model containing 15 geometric parameters, including D. This model was compared with a model containing D alone. The multivariate model correctly classified 98% of all cases, whereas the D-only model correctly classified 72% of cases. Receiver operating characteristic analysis showed that the multivariate model had an area under the curve of 0.995, as compared with 0.770 for the D-only model. This difference was highly significant (P < 0.0001).

CONCLUSIONS

This study demonstrates that a multivariable model using geometric factors entirely measurable from CT scanning can be a better predictor of AAA rupture than maximum diameter alone.

摘要

背景

目前,腹主动脉瘤(AAA)破裂风险是通过主动脉最大直径(D)来确定的。在本研究中,我们试图找出一组基于计算机断层扫描(CT)的几何参数,这些参数能比直径D更好地预测破裂风险。

方法

我们获取了180例患者的CT扫描图像(90例破裂性AAA和90例择期AAA修复患者),然后使用自动化软件计算每个AAA的一维、二维和三维几何参数。采用线性回归来确定破裂组成员的单变量相关性。然后我们使用逐步向后排除法生成一个预测破裂的逻辑回归模型。

结果

线性回归确定了40个与破裂相关的因素。经过逐步向后排除,我们开发了一个包含15个几何参数(包括直径D)的多变量逻辑回归模型。将该模型与仅包含直径D的模型进行比较。多变量模型正确分类了所有病例的98%,而仅含直径D的模型正确分类了72%的病例。受试者工作特征分析表明,多变量模型的曲线下面积为0.995,而仅含直径D的模型为0.770。这种差异具有高度显著性(P < 0.0001)。

结论

本研究表明,一个使用完全可从CT扫描测量的几何因素的多变量模型比单独使用最大直径能更好地预测AAA破裂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验