Suppr超能文献

来自益生菌的129家族糖苷水解酶的首个晶体结构揭示了关键残基和金属辅因子。

The first crystal structure of a family 129 glycoside hydrolase from a probiotic bacterium reveals critical residues and metal cofactors.

作者信息

Sato Mayo, Liebschner Dorothee, Yamada Yusuke, Matsugaki Naohiro, Arakawa Takatoshi, Wills Siobhán S, Hattie Mitchell, Stubbs Keith A, Ito Tasuku, Senda Toshiya, Ashida Hisashi, Fushinobu Shinya

机构信息

Department of Biotechnology, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.

Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan.

出版信息

J Biol Chem. 2017 Jul 21;292(29):12126-12138. doi: 10.1074/jbc.M117.777391. Epub 2017 May 25.

Abstract

The α--acetylgalactosaminidase from the probiotic bacterium (NagBb) belongs to the glycoside hydrolase family 129 and hydrolyzes the glycosidic bond of Tn-antigen (GalNAcα1-Ser/Thr). NagBb is involved in assimilation of -glycans on mucin glycoproteins by in the human gastrointestinal tract, but its catalytic mechanism has remained elusive because of a lack of sequence homology around putative catalytic residues and of other structural information. Here we report the X-ray crystal structure of NagBb, representing the first GH129 family structure, solved by the single-wavelength anomalous dispersion method based on sulfur atoms of the native protein. We determined ligand-free, GalNAc, and inhibitor complex forms of NagBb and found that Asp-435 and Glu-478 are located in the catalytic domain at appropriate positions for direct nucleophilic attack at the anomeric carbon and proton donation for the glycosidic bond oxygen, respectively. A highly conserved Asp-330 forms a hydrogen bond with the O4 hydroxyl of GalNAc in the -1 subsite, and Trp-398 provides a stacking platform for the GalNAc pyranose ring. Interestingly, a metal ion, presumably Ca, is involved in the recognition of the GalNAc -acetyl group. Mutations at Asp-435, Glu-478, Asp-330, and Trp-398 and residues involved in metal coordination (including an all-Ala quadruple mutant) significantly reduced the activity, indicating that these residues and the metal ion play important roles in substrate recognition and catalysis. Interestingly, NagBb exhibited some structural similarities to the GH101 endo-α--acetylgalactosaminidases, but several critical differences in substrate recognition and reaction mechanism account for the different activities of these two enzymes.

摘要

来自益生菌的α-乙酰半乳糖苷酶(NagBb)属于糖苷水解酶家族129,可水解Tn抗原(GalNAcα1-Ser/Thr)的糖苷键。NagBb参与人体胃肠道中微生物对粘蛋白糖蛋白上聚糖的同化作用,但由于推定的催化残基周围缺乏序列同源性以及其他结构信息,其催化机制仍不清楚。在此,我们报告了NagBb的X射线晶体结构,这是第一个通过基于天然蛋白质硫原子的单波长反常色散法解析的GH129家族结构。我们确定了NagBb的无配体、GalNAc和抑制剂复合物形式,发现Asp-435和Glu-478分别位于催化结构域中适当的位置,可分别对异头碳进行直接亲核攻击以及为糖苷键氧提供质子。高度保守的Asp-330在-1亚位点与GalNAc的O4羟基形成氢键,Trp-398为GalNAc吡喃糖环提供一个堆积平台。有趣的是,一种金属离子(可能是Ca)参与了对GalNAc乙酰基的识别。Asp-435、Glu-478、Asp-330和Trp-398以及参与金属配位的残基(包括全丙氨酸四重突变体)的突变显著降低了活性,表明这些残基和金属离子在底物识别和催化中起重要作用。有趣的是,NagBb与GH101内切α-乙酰半乳糖苷酶表现出一些结构相似性,但在底物识别和反应机制上的几个关键差异解释了这两种酶的不同活性。

相似文献

1
The first crystal structure of a family 129 glycoside hydrolase from a probiotic bacterium reveals critical residues and metal cofactors.
J Biol Chem. 2017 Jul 21;292(29):12126-12138. doi: 10.1074/jbc.M117.777391. Epub 2017 May 25.
4
Crystal structure of the Enterococcus faecalis α-N-acetylgalactosaminidase, a member of the glycoside hydrolase family 31.
FEBS Lett. 2020 Jul;594(14):2282-2293. doi: 10.1002/1873-3468.13804. Epub 2020 May 22.
6
Discovery of α-l-arabinopyranosidases from human gut microbiome expands the diversity within glycoside hydrolase family 42.
J Biol Chem. 2017 Dec 22;292(51):21092-21101. doi: 10.1074/jbc.M117.792598. Epub 2017 Oct 23.
8
Structural and mechanistic insights into the substrate specificity and hydrolysis of GH31 α-N-acetylgalactosaminidase.
Biochimie. 2022 Apr;195:90-99. doi: 10.1016/j.biochi.2021.11.007. Epub 2021 Nov 23.
9
Structural Analysis of a Family 101 Glycoside Hydrolase in Complex with Carbohydrates Reveals Insights into Its Mechanism.
J Biol Chem. 2015 Oct 16;290(42):25657-69. doi: 10.1074/jbc.M115.680470. Epub 2015 Aug 24.
10
The structure of a glycoside hydrolase 29 family member from a rumen bacterium reveals unique, dual carbohydrate-binding domains.
Acta Crystallogr F Struct Biol Commun. 2016 Oct 1;72(Pt 10):750-761. doi: 10.1107/S2053230X16014072. Epub 2016 Sep 22.

引用本文的文献

2
Mucin utilization by gut microbiota: recent advances on characterization of key enzymes.
Essays Biochem. 2023 Apr 18;67(3):345-353. doi: 10.1042/EBC20220121.
3
Potential applications of recombinant bifidobacterial proteins in the food industry, biomedicine, process innovation and glycobiology.
Food Sci Biotechnol. 2021 Aug 3;30(10):1277-1291. doi: 10.1007/s10068-021-00957-1. eCollection 2021 Oct.
5
Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes.
Biochem Soc Trans. 2021 Apr 30;49(2):563-578. doi: 10.1042/BST20200163.
6
Mucosal glycan degradation of the host by the gut microbiota.
Glycobiology. 2021 Jun 29;31(6):691-696. doi: 10.1093/glycob/cwaa097.
7
Enzymatic Adaptation of to Host Glycans, Viewed from Glycoside Hydrolyases and Carbohydrate-Binding Modules.
Microorganisms. 2020 Mar 28;8(4):481. doi: 10.3390/microorganisms8040481.
9
Utilization of Host-Derived Glycans by Intestinal and Species.
Front Microbiol. 2018 Aug 17;9:1917. doi: 10.3389/fmicb.2018.01917. eCollection 2018.

本文引用的文献

1
Complex pectin metabolism by gut bacteria reveals novel catalytic functions.
Nature. 2017 Apr 6;544(7648):65-70. doi: 10.1038/nature21725. Epub 2017 Mar 22.
3
Structural Snapshots for Mechanism-Based Inactivation of a Glycoside Hydrolase by Cyclopropyl Carbasugars.
Angew Chem Int Ed Engl. 2016 Nov 21;55(48):14978-14982. doi: 10.1002/anie.201607431. Epub 2016 Oct 26.
4
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
6
On the influence of crystal size and wavelength on native SAD phasing.
Acta Crystallogr D Struct Biol. 2016 Jun;72(Pt 6):728-41. doi: 10.1107/S2059798316005349. Epub 2016 May 25.
7
Host-derived glycans serve as selected nutrients for the gut microbe: human milk oligosaccharides and bifidobacteria.
Biosci Biotechnol Biochem. 2016;80(4):621-32. doi: 10.1080/09168451.2015.1132153. Epub 2016 Feb 3.
8
Structural Analysis of a Family 101 Glycoside Hydrolase in Complex with Carbohydrates Reveals Insights into Its Mechanism.
J Biol Chem. 2015 Oct 16;290(42):25657-69. doi: 10.1074/jbc.M115.680470. Epub 2015 Aug 24.
9
The effect of selected factors on the survival of Bacillus cereus in the human gastrointestinal tract.
Microb Pathog. 2015 May;82:7-14. doi: 10.1016/j.micpath.2015.03.015. Epub 2015 Mar 17.
10
Catalytic role of the calcium ion in GH97 inverting glycoside hydrolase.
FEBS Lett. 2014 Aug 25;588(17):3213-7. doi: 10.1016/j.febslet.2014.07.002. Epub 2014 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验