Suppr超能文献

一种结合液相色谱和高分辨率质谱的QuEChERS方法的开发与验证,用于测定蜂蜜中的吡咯里西啶和托烷生物碱。

Development and validation of a QuEChERS method coupled to liquid chromatography and high resolution mass spectrometry to determine pyrrolizidine and tropane alkaloids in honey.

作者信息

Martinello Marianna, Borin Alice, Stella Roberto, Bovo Davide, Biancotto Giancarlo, Gallina Albino, Mutinelli Franco

机构信息

National Reference Laboratory for Beekeeping, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy.

National Reference Laboratory for Beekeeping, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy.

出版信息

Food Chem. 2017 Nov 1;234:295-302. doi: 10.1016/j.foodchem.2017.04.186. Epub 2017 May 2.

Abstract

Awareness about pyrrolizidine alkaloids (PAs) and tropane alkaloids (TAs) in food was recently raised by the European Food Safety Authority stressing the lack of data and gaps of knowledge required to improve the risk assessment strategy. The present study aimed at the elaboration and validation of a method to determine PAs and TAs in honey. QuEChERS sample treatment and liquid chromatography coupled to hybrid high resolution mass spectrometry, were used. The method resulted in good linearity (R>0.99) and low limits of detection and quantification, ranging from 0.04 to 0.2µgkg and from 0.1 to 0.7µgkg respectively. Recoveries ranged from 92.3 to 114.8% with repeatability lying between 0.9 and 15.1% and reproducibility between 1.1 and 15.6%. These performances demonstrate the selectivity and sensitivity of the method for simultaneous trace detection and quantification of PAs and TAs in honey, verified through the analysis of forty commercial samples.

摘要

欧洲食品安全局最近提高了对食品中吡咯里西啶生物碱(PAs)和托烷生物碱(TAs)的关注,强调缺乏改进风险评估策略所需的数据和知识空白。本研究旨在制定并验证一种测定蜂蜜中PAs和TAs的方法。采用了QuEChERS样品处理方法以及液相色谱与混合高分辨率质谱联用技术。该方法具有良好的线性(R>0.99)以及较低的检测限和定量限,分别为0.04至0.2μg/kg和0.1至0.7μg/kg。回收率在92.3%至114.8%之间,重复性在0.9%至15.1%之间,再现性在1.1%至15.6%之间。通过对40个商业样品的分析验证,这些性能证明了该方法对蜂蜜中PAs和TAs进行同时痕量检测和定量的选择性和灵敏度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验