Suppr超能文献

一款用于在护身符腕戴设备上进行实时日常活动水平监测的应用程序。

: An App for Real-Time Daily Activity Level Monitoring on the Amulet Wrist-Worn Device.

作者信息

Boateng George, Batsis John A, Halter Ryan, Kotz David

机构信息

Dartmouth College.

出版信息

Proc IEEE Int Conf Pervasive Comput Commun Workshops. 2017 Mar;2017. doi: 10.1109/PERCOMW.2017.7917601. Epub 2017 May 4.

Abstract

Physical activity helps reduce the risk of cardiovascular disease, hypertension and obesity. The ability to monitor a person's daily activity level can inform self-management of physical activity and related interventions. For older adults with obesity, the importance of regular, physical activity is critical to reduce the risk of long-term disability. In this work, we present , an application on the Amulet wrist-worn device that measures daily activity levels (sedentary, moderate and vigorous) of individuals, continuously and in real-time. The app implements an activity-level detection model, continuously collects acceleration data on the Amulet, classifies the current activity level, updates the day's accumulated time spent at that activity level, logs the data for later analysis, and displays the results on the screen. We developed an activity-level detection model using a Support Vector Machine (SVM). We trained our classifiers using data from a user study, where subjects performed the following physical activities: sit, stand, lay down, walk and run. With 10-fold cross validation and leave-one-subject-out (LOSO) cross validation, we obtained preliminary results that suggest accuracies up to 98%, for n=14 subjects. Testing the app revealed a projected battery life of up to 4 weeks before needing to recharge. The results are promising, indicating that the app may be used for activity-level monitoring, and eventually for the development of interventions that could improve the health of individuals.

摘要

体育活动有助于降低心血管疾病、高血压和肥胖的风险。监测一个人的日常活动水平的能力可以为体育活动的自我管理和相关干预提供信息。对于肥胖的老年人来说,定期进行体育活动对于降低长期残疾风险至关重要。在这项工作中,我们展示了一款在护身符腕戴设备上的应用程序,它可以连续实时测量个人的日常活动水平(久坐、适度和剧烈)。该应用程序实现了一个活动水平检测模型,持续收集护身符上的加速度数据,对当前活动水平进行分类,更新当天在该活动水平上累计花费的时间,记录数据以供后续分析,并在屏幕上显示结果。我们使用支持向量机(SVM)开发了一个活动水平检测模型。我们使用来自一项用户研究的数据训练我们的分类器,在该研究中,受试者进行了以下体育活动:坐、站、躺、走和跑。通过10折交叉验证和留一法(LOSO)交叉验证,我们获得了初步结果,表明对于n = 14名受试者,准确率高达98%。对该应用程序的测试显示,在需要充电之前,预计电池续航时间长达4周。结果很有前景,表明该应用程序可用于活动水平监测,并最终用于开发能够改善个人健康的干预措施。

相似文献

1
: An App for Real-Time Daily Activity Level Monitoring on the Amulet Wrist-Worn Device.
Proc IEEE Int Conf Pervasive Comput Commun Workshops. 2017 Mar;2017. doi: 10.1109/PERCOMW.2017.7917601. Epub 2017 May 4.
2
: Wearable App for Monitoring and Encouraging Physical Activity among Older Adults.
Int Conf Wearable Implant Body Sens Netw. 2018 Mar;2018:46-49. doi: 10.1109/BSN.2018.8329655. Epub 2018 Apr 5.
3
A Smartwatch Step-Counting App for Older Adults: Development and Evaluation Study.
JMIR Aging. 2022 Aug 10;5(3):e33845. doi: 10.2196/33845.
4
Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
J Appl Physiol (1985). 2018 May 1;124(5):1284-1293. doi: 10.1152/japplphysiol.00760.2017. Epub 2018 Jan 25.
5
Mobile Sensing and Support for People With Depression: A Pilot Trial in the Wild.
JMIR Mhealth Uhealth. 2016 Sep 21;4(3):e111. doi: 10.2196/mhealth.5960.
6
Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data.
Med Sci Sports Exerc. 2018 Mar;50(3):634-641. doi: 10.1249/MSS.0000000000001460.
7
Use of Amulet in behavioral change for geriatric obesity management.
Digit Health. 2019 Jun 21;5:2055207619858564. doi: 10.1177/2055207619858564. eCollection 2019 Jan-Dec.
8
Activity Monitoring with a Wrist-Worn, Accelerometer-Based Device.
Micromachines (Basel). 2018 Sep 10;9(9):450. doi: 10.3390/mi9090450.
9
Using Activity Monitors to Measure Sit-to-Stand Transitions in Overweight/Obese Youth.
Med Sci Sports Exerc. 2017 Aug;49(8):1592-1598. doi: 10.1249/MSS.0000000000001266.

引用本文的文献

1
A Smartwatch Step-Counting App for Older Adults: Development and Evaluation Study.
JMIR Aging. 2022 Aug 10;5(3):e33845. doi: 10.2196/33845.
2
Experience: Design, Development and Evaluation of a Wearable Device for mHealth Applications.
Proc Annu Int Conf Mob Comput Netw. 2019 Aug;2019. doi: 10.1145/3300061.3345432. Epub 2019 Oct 11.
3
Trends in Persuasive Technologies for Physical Activity and Sedentary Behavior: A Systematic Review.
Front Artif Intell. 2020 Apr 28;3:7. doi: 10.3389/frai.2020.00007. eCollection 2020.
4
Continuous Detection of Physiological Stress with Commodity Hardware.
ACM Trans Comput Healthc. 2020 Apr;1(2). doi: 10.1145/3361562.
5
Use of Amulet in behavioral change for geriatric obesity management.
Digit Health. 2019 Jun 21;5:2055207619858564. doi: 10.1177/2055207619858564. eCollection 2019 Jan-Dec.
6
Usability Evaluation for the Amulet Wearable Device in Rural Older Adults with Obesity.
Gerontechnology. 2018 Sep;17(3):151-159. doi: 10.4017/gt.2018.17.3.003.00.
7
Effective Validation Model and Use of Mobile-Health Applications for the Elderly.
Healthc Inform Res. 2018 Oct;24(4):276-282. doi: 10.4258/hir.2018.24.4.276. Epub 2018 Oct 31.
8
Sensors and Functionalities of Non-Invasive Wrist-Wearable Devices: A Review.
Sensors (Basel). 2018 May 25;18(6):1714. doi: 10.3390/s18061714.
9
: Wearable App for Monitoring and Encouraging Physical Activity among Older Adults.
Int Conf Wearable Implant Body Sens Netw. 2018 Mar;2018:46-49. doi: 10.1109/BSN.2018.8329655. Epub 2018 Apr 5.

本文引用的文献

1
Activity recognition using a single accelerometer placed at the wrist or ankle.
Med Sci Sports Exerc. 2013 Nov;45(11):2193-203. doi: 10.1249/MSS.0b013e31829736d6.
2
Health benefits of physical activity: the evidence.
CMAJ. 2006 Mar 14;174(6):801-9. doi: 10.1503/cmaj.051351.
3
Compendium of physical activities: an update of activity codes and MET intensities.
Med Sci Sports Exerc. 2000 Sep;32(9 Suppl):S498-504. doi: 10.1097/00005768-200009001-00009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验