Calabrese Gaetano, Morgan Bruce, Riemer Jan
1 Institute of Biochemistry, University of Cologne , Cologne, Germany .
2 Department of Cellular Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany .
Antioxid Redox Signal. 2017 Nov 20;27(15):1162-1177. doi: 10.1089/ars.2017.7121. Epub 2017 Jun 30.
Mitochondrial glutathione fulfills crucial roles in a number of processes, including iron-sulfur cluster biosynthesis and peroxide detoxification. Recent Advances: Genetically encoded fluorescent probes for the glutathione redox potential (E) have permitted extensive new insights into the regulation of mitochondrial glutathione redox homeostasis. These probes have revealed that the glutathione pools of the mitochondrial matrix and intermembrane space (IMS) are highly reduced, similar to the cytosolic glutathione pool. The glutathione pool of the IMS is in equilibrium with the cytosolic glutathione pool due to the presence of porins that allow free passage of reduced glutathione (GSH) and oxidized glutathione (GSSG) across the outer mitochondrial membrane. In contrast, limited transport of glutathione across the inner mitochondrial membrane ensures that the matrix glutathione pool is kinetically isolated from the cytosol and IMS.
In contrast to the situation in the cytosol, there appears to be extensive crosstalk between the mitochondrial glutathione and thioredoxin systems. Further, both systems appear to be intimately involved in the removal of reactive oxygen species, particularly hydrogen peroxide (HO), produced in mitochondria. However, a detailed understanding of these interactions remains elusive.
We postulate that the application of genetically encoded sensors for glutathione in combination with novel HO probes and conventional biochemical redox state assays will lead to fundamental new insights into mitochondrial redox regulation and reinvigorate research into the physiological relevance of mitochondrial redox changes. Antioxid. Redox Signal. 27, 1162-1177.
线粒体谷胱甘肽在许多过程中发挥着关键作用,包括铁硫簇生物合成和过氧化物解毒。
用于谷胱甘肽氧化还原电位(E)的基因编码荧光探针使人们对线粒体谷胱甘肽氧化还原稳态的调节有了广泛的新认识。这些探针显示,线粒体基质和膜间隙(IMS)中的谷胱甘肽池高度还原,类似于胞质谷胱甘肽池。由于存在孔蛋白,允许还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)自由穿过线粒体外膜,IMS中的谷胱甘肽池与胞质谷胱甘肽池处于平衡状态。相比之下,谷胱甘肽在线粒体内膜上的转运有限,这确保了基质谷胱甘肽池在动力学上与胞质和IMS隔离。
与胞质中的情况不同,线粒体谷胱甘肽和硫氧还蛋白系统之间似乎存在广泛的相互作用。此外,这两个系统似乎都密切参与了线粒体中产生的活性氧,特别是过氧化氢(HO)的清除。然而,对这些相互作用的详细理解仍然难以捉摸。
我们推测,将基因编码的谷胱甘肽传感器与新型HO探针和传统生化氧化还原状态分析相结合的应用,将为线粒体氧化还原调节带来全新的基本认识,并重振对线粒体氧化还原变化生理相关性的研究。《抗氧化与氧化还原信号》27,1162 - 1177。