Liu Shouyang, Baret Fred, Andrieu Bruno, Burger Philippe, Hemmerlé Matthieu
UMR EMMAH, INRA, UAPVAvignon, France.
UMR ECOSYS, INRA, AgroParisTech, Université Paris-SaclayThiverval-Grignon, France.
Front Plant Sci. 2017 May 16;8:739. doi: 10.3389/fpls.2017.00739. eCollection 2017.
Crop density is a key agronomical trait used to manage wheat crops and estimate yield. Visual counting of plants in the field is currently the most common method used. However, it is tedious and time consuming. The main objective of this work is to develop a machine vision based method to automate the density survey of wheat at early stages. RGB images taken with a high resolution RGB camera are classified to identify the green pixels corresponding to the plants. Crop rows are extracted and the connected components (objects) are identified. A neural network is then trained to estimate the number of plants in the objects using the object features. The method was evaluated over three experiments showing contrasted conditions with sowing densities ranging from 100 to 600 seeds⋅m. Results demonstrate that the density is accurately estimated with an average relative error of 12%. The pipeline developed here provides an efficient and accurate estimate of wheat plant density at early stages.
作物密度是用于管理小麦作物和估算产量的关键农艺性状。目前,田间植株的目视计数是最常用的方法。然而,这既繁琐又耗时。这项工作的主要目标是开发一种基于机器视觉的方法,以实现小麦早期密度调查的自动化。使用高分辨率RGB相机拍摄的RGB图像被分类,以识别与植株对应的绿色像素。提取作物行并识别连通组件(对象)。然后训练一个神经网络,使用对象特征来估计对象中的植株数量。该方法在三个实验中进行了评估,这些实验展示了播种密度从100到600粒·平方米不等的对比条件。结果表明,密度估计准确,平均相对误差为12%。这里开发的流程能够高效且准确地估计小麦早期的植株密度。